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The need for data-driven estimation of 
dynamics is widespread

• Epidemiology (SIR model)

• Predicting medical events 
• Blood glucose levels in diabetic patients

• Weather and climate

• Industrial and manufacturing processes

• Financial markets

• Traffic patterns

• Energy grid demands

• Model predictive control

• Surrogate modeling
• Molecular dynamics
• Fluid dynamics
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Hidden Markov model
Joint parameter-state estimation with stochastic dynamics
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𝑥0 𝑥1

𝑦2𝑦1

𝜃

𝑥2 …
1. Parameter Uncertainty

2. Model Uncertainty

3. Measurement Uncertainty

𝑋𝑘 ∈ ℝ𝑑𝑥 , 𝑌𝑘 ∈ ℝ𝑑𝑦 , 𝜃 = 𝜃Ψ, 𝜃ℎ, 𝜃Σ, 𝜃Γ ∈ ℝ𝑑𝜃

𝑋𝑘 = Ψ 𝑋𝑘−1, 𝑢𝑘−1, 𝜃Ψ + 𝜉𝑘;  𝜉𝑘 ∼ 𝒩 0, Σ 𝜃Σ

𝑌𝑘 = ℎ 𝑋𝑘 , 𝜃ℎ + 𝜂𝑘;  𝜂𝑘 ∼ 𝒩 0, Γ 𝜃Γ

The process noise term 
𝜉𝑘 accounts for model 

error
• Parameter error
• Integration error
• Insufficient model 

expressiveness

𝑦0

𝑢0 𝑢1 𝑢2



Bayesian framework gives conditions for 
optimality of many popular approaches
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Dynamic mode 
decomposition

SINDy Markov parameter 
methods

Multiple shooting

Bayesian system ID framework

Tu, 2013. Brunton et al., 2016. Oymak and Ozay, 2019. Ribeiro et al., 2020.



Bayesian framework yields 
advantageous changes to the 
objective function surface
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• Long time horizon simulation

• Short time horizon simulation

• PhD work
• Optimal combination of (a) and (b)

(a) (b)

(a)

(b)

(c)

(c)

✓



✓



✓



✓

✓

✓

(a) (b) (c)

Assesses long-term behavior

Smooths local minima

Increased confidence with data
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Publications
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Journals
• Mustaev, Artem, Nicholas Galioto, et al. "A switching Kalman filter approach to online mitigation and correction of sensor 

corruption for inertial navigation." arXiv preprint arXiv:2412.06601 (2024). (under review at ION Navigation)

• Galioto, Nicholas, et al. "Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and 
reduced-order modeling." Computer Methods in Applied Mechanics and Engineering 430 (2024): 117194.

• Galioto, Nicholas, and Alex Arkady Gorodetsky. "Likelihood-based generalization of Markov parameter estimation and multiple 
shooting objectives in system identification." Physica D: Nonlinear Phenomena 462 (2024): 134146. 

• Galioto, Nicholas, and Alex Arkady Gorodetsky. “Bayesian system ID: Optimal management of parameter, model, and 
measurement uncertainty.” Nonlinear Dynamics, vol. 102, no. 1, 2020, pp. 241-267.

Conferences
• Sharma, Harsh*, Nicholas Galioto*, Alex Arkady Gorodetsky, and Boris Kramer. “Bayesian Identification of Nonseparable 

Hamiltonian Systems Using Stochastic Dynamic Models.” 2022 61st IEEE Conference on Decision and Control (CDC). IEEE, 2022.

• Galioto, Nicholas, and Alex Arkady Gorodetsky. “A new objective for identification of partially observed linear time-invariant 
dynamical systems from input-output data.” Learning for Dynamics and Control. PMLR, 2021.

• Galioto, Nicholas, and Alex Arkady Gorodetsky. “Bayesian identification of Hamiltonian dynamics from symplectic data.” 2020 
59th IEEE Conference on Decision and Control (CDC). IEEE, 2020.

* Denotes equal contribution



Outline

• Cell reprogramming

• Introduction to Hi-C data

• ARCH3D: Architecture and pre-training

• Results

• Conclusions and future work
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Introduction

Cell reprogramming
High-throughput chromosome conformation capture (Hi-C)
ARCH3D: Architecture and pre-training
Results
Conclusions and future work



Collaborators
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Bioinformatics
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Bioinformatics
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Jillian Cwycyshyn 
Bioinformatics

PhD students:



The ultimate goal: my cells, my cure!
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Bone-marrow transplant is the Treatment for the Treatment

SOLUTION
Autologous cell reprogramming

PROBLEM
GVHD is when the patient cells attack 

the donor cells

Holtan, Shernan G., et al. "Disease progression, treatments, hospitalization, and clinical outcomes in acute GVHD: a multicenter chart review." Bone marrow transplantation 57.10 (2022): 1581-1585.



Cell reprogramming
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Other applications:
• Replenish immune system
• Tissue regeneration
• Drug discovery
• Disease modeling



Cell reprogramming can be achieved through introduction of 
expertly-chosen transcription factors (TFs)
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Challenges:
• Experiments are costly
• The set of possible TFs is vast
• Reprogramming efficiency 

remains low (1-3%)



Genome structure regulates cell identity

• Chromosomes occupy distinct regions of the nucleus known as “chromosome territories”

• Active genes are located in areas of loosely-packed chromatin (euchromatin)

• Topologically associating domains (TADs) insulate sections of the genome from each other

• Enhancers are brought into proximity of promoters through chromatin looping

Cell reprogramming
ngalioto@umich.edu
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DNA helix

Chromosome 
territories

Chromatin domains 
(TADs)

NucleusGene (OFF)
Heterochromatin

Gene (ON)
Euchromatin

Loops bring distal elements 
into spatial proximity

Adapted from: Misteli, Tom. "The self-organizing genome: principles of genome architecture and function." Cell 183.1 (2020): 28-45.



The genome is a dynamical system
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Existing method: Data-guided control (DGC)
Formulates cell reprogramming as a control problem
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• State is represented using RNA-seq data, grouped into TADs

• Selection of TFs is modeled as a control policy

• Limitation: Cannot account for changes in TAD structure

𝑢𝑡
∗ = argmin

𝑢𝑡

𝑥𝑇 − 𝑧6(𝑢𝑡)

Target cell 
state

Estimated 
cell state

Ronquist, Scott, et al. "Algorithm for cellular reprogramming." Proceedings of the National Academy of Sciences 114.45 (2017): 11832-11837.

Optimal TF policy



Foundation models show promise in producing 
multi-purpose representations of biological data
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DNA Sequence
• GenSLM
• AlphaGenome
• Evo2

Transcriptomic
• Geneformer
• scGPT
• scBERT

Protein sequence
• AlphaFold
• ESM-2, 3

ATAC-seq + DNA
• EPCOT
• GET

Spatial transcriptomics
• scGPT-spatial
• Nicheformer

Genome structure remains underexplored!



AI-powered state representation
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Transcriptomic 
foundation model

Chromosome conformation 
foundation model

Fusion of structure and function

Contribution of function Contribution of structure

Dynamical model of 
cell reprogramming

Contribution of dynamics



Introduction
Cell reprogramming

High-throughput chromosome 
conformation capture (Hi-C)
ARCH3D: Architecture and pre-training
Results
Conclusions and future work



Hi-C records the number of times two loci 
come into contact

High-throughput chromosome conformation capture (Hi-C)
ngalioto@umich.edu
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•Each entry in the contact matrix is known as a pixel
•Each pixel can be interpreted as a contact frequency

Block diagonal structure reflects 
chromosome territories

Lieberman-Aiden, Erez, et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." science 326.5950 (2009): 289-293.



Original Hi-C paper
Plaid pattern reflects A/B compartmentalization of genome structure
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Contact probability follows 
a power-law scaling

Lieberman-Aiden, Erez, et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." Science 326.5950 (2009): 289-293.

Dividing every diagonal by its average 
(observed/expected) mitigates the diagonal dominance

The first eigenvalue correlates 
with chromatin accessibility



Hi-C: Resolution and coverage
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High resolution

Low resolution

Low coverage High coverage

• Low coverage cannot capture fine-scale structures (e.g., loops)
• However, low coverage can represent low-resolution Hi-C with similar accuracy as the high-coverage 

experiment
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ARCH3D: Architecture and pre-training
Results
Conclusions and future work



Pre-training corpus
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Consortia:
• 4DNucleome
• ENCODE

Experiments:
• In-situ Hi-C
• Dilution Hi-C
• DNase Hi-C

Preprocessing:
• KR normalization
• Observed/expected

ARCH3D: Architecture and pre-training
ngalioto@umich.edu

481 total experiments (> 10M contacts)



Tokenization scheme
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• Represents genomic loci, not patches
• Permits loci of any length (multiple of 5kb)
• Retains high resolution along columns

25 kb

5 kb bins

Column averaging

25 kb input vector

⋯

⋯

Locus lengths:
• 5 kb
• 10 kb
• 25 kb
• 50 kb
• 100 kb
• 250 kb
• 500 kb
• 1 Mb



Biology-informed encodings provide the model with 
positional information
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1

2

3

4

⋮

𝑠 𝑏𝑝0 𝑠(𝑏𝑝𝑓)

𝑠𝑖 𝑏𝑝 = sin
𝑏𝑝

10006𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
, 𝑠𝑖 𝑏𝑝 = cos

𝑏𝑝

10006𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
 

𝑠 is a vector-valued sinusoidal encoding with 𝑖th entry defined as:

if 𝑖 is even: if 𝑖 is odd:

Final positional encoding: 𝑠 𝑏𝑝0 𝑠(𝑏𝑝𝑓) chr+

Base pair encodings Chromosomal encodings

ARCH3D: Architecture and pre-training
ngalioto@umich.edu

chr: 𝑏𝑝0 chr: 𝑏𝑝𝑓

Genomic locus:

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



ARCH3D architecture
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Model 
dimension

Layers
Attention 

heads
Feedforward 

dimension
Activation

1,024 24 16 4,096 ReLU
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𝑛𝑠𝑒𝑞 × 𝑑𝑚𝑜𝑑𝑒𝑙 𝑛𝑠𝑒𝑞 × 𝑑𝑚𝑜𝑑𝑒𝑙

Locus embeddings

Transformer

𝑛
𝑠𝑒

𝑞
 t

o
ke

n
s

Positional encoding

Base pair Chromosome

+

ARCH3D: Architecture and pre-training
ngalioto@umich.edu

𝑛𝑠𝑒𝑞 × 𝑛𝑏𝑖𝑛𝑠

𝑛𝑠𝑒𝑞 × 𝑑𝑚𝑜𝑑𝑒𝑙 𝑛𝑠𝑒𝑞 × 𝑑𝑚𝑜𝑑𝑒𝑙

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." Proceedings 
of the 2019 conference of the NAACL: human language technologies, volume 1 (long and short papers). 2019.



Task head architecture
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+ =

Locus embeddings are transformed to pixel embeddings 
through pairwise addition

Linear + ReLU

Predicted pixels

Linear + ReLU

1024

2048

2048

1024

1

Task head

Linear + ReLU

Linear

𝑝𝑖𝑗 = ℓ𝑖 + ℓ𝑗 ,  𝑖, 𝑗 = 1, … , 𝑛𝑠𝑒𝑞

𝑝𝑖𝑗 is the 𝑖𝑗th pixel embedding and ℓ𝑖  the 𝑖th locus embedding

ARCH3D: Architecture and pre-training
ngalioto@umich.edu

Locus embeddings Pixel embeddingsLocus embeddings



Pre-training task: Masked locus modeling

29
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ARCH3D

Mean squared 
error loss

Hi-C data

Target pixels Predicted pixels

Pixel embeddingsLocus embeddings

Chromosome encodings

Data input

Base pair encodings

Task head

ARCH3D: Architecture and pre-training
ngalioto@umich.edu



Training approach
University of Michigan 
Lighthouse HPC Cluster

17 nodes, each with:

• 8 NVIDIA H100 GPUs 
(80 GB VRAM)

• 1 TB RAM

• 96 cores

30
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Stage GPUs RAM (TB) Epochs Time (h) GPU hours

1 8 1.0 6,000 504 4,032

2 16 / 32 3.2 / 4.0 5,700 384 9,600

Stage 1: 194 Hi-C experiments;    Stage 2: 481 Hi-C experiments

Optimizer: Adam

Learning rate schedule:

1. Linear warmup to 1e-5 over 
500 steps

2. Constant 1e-5 for 3,000 steps

3. Cosine anneal to 1e-6 over 
2,000 steps

4. Repeat 2—3 

In final run, learning rate held at 10% of max.

Stage 1 Stage 2
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Conclusions and future work



Positioning of embeddings reflects genomic structure

Results
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Main observations:
1. Diagonal blocks show shortest average distance, 

similar to chromosome territories
2. More differentiated cell lines show greater 

distance between inter-chromosomal embeddings
3. Embeddings from smaller chromosomes are 

positioned closer together than embeddings from 
larger chromosomes, mirroring experimental data

Average distance between embeddings within and across chromosomes

Average inter-chromosomal contact probabilities

Lieberman-Aiden, Erez, et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." science 326.5950 (2009): 289-293.

Embedding distances

Data



Resolution enhancement training scheme
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ARCH3D Task head

Locus embeddings

Training:
• Cell: GM12878
• Coverage: 1%, 10%, 100%
• Locus lengths: 10kb, 25kb, 50kb, 100kb, 500kb, 1Mb

Low-coverage Hi-C High-coverage Hi-C



ARCH3D predictions degrade gracefully with decreasing coverage
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Full coverage 10% 4% 1%
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Rel. error =
𝐿𝐶 − 𝐻𝐶 𝐹

𝐻𝐶 𝐹
, where 𝐿𝐶 is data/predictions from low-coverage and 𝐻𝐶 is high-coverage data

• Cell: IMR-90
• Chromosome: 14
• Resolution: 100 kb
• HC contacts: 1B



Evidence suggests genes cluster into transcription factories
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• Gene transcription is localized to a small number of sites known as “transcription factories”
• Genes within a transcription factory are co-regulated
• Pore-C records multi-way interactions using long-read sequencing

Dotson, Gabrielle A., et al. "Deciphering multi-way interactions in the human genome." Nature Communications 13.1 (2022): 5498.



Pore-C creates a hypergraph
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Multi-way interactions
(Pore-C)

Pairwise interactions
(Virtual Hi-C)

Clique expansion

Clique-expansion gives an approximation of Hi-C referred to as “virtual Hi-C”

Surana, Amit, Can Chen, and Indika Rajapakse. "Hypergraph similarity measures." IEEE Transactions on Network Science and Engineering 10.2 (2022): 658-674.

Experimental procedure



Hyperedge prediction training scheme
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HyperedgeNot hyperedge
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Virtual Hi-C

ARCH3D
Sigmoid

1

1 + 𝑒−𝑥A
ve

ra
ge

Frozen encoder

Trainable task head

Select only the embeddings of 
loci in the candidate hyperedge

Probability of 
hyperedge

Three negative samples are generated for every positive sample
• Replace a random selection of nodes in the positive sample 

with randomly-chosen nodes from the same chromosome

Zhang, Ruochi, and Jian Ma. "MATCHA: probing multi-way chromatin interaction with hypergraph 

representation learning." Cell systems 10.5 (2020): 397-407.



Prediction of multi-way interactions generalizes to 
unseen cell lines using virtual Hi-C

Results
ngalioto@umich.edu

38

Training set: 
• GM12878

Testing set: 
• BJ fibroblasts
• IR fibroblasts

Lo
g 

sc
al

e!

AUROC AUPR

GM12878 0.997 0.997

BJ fibroblasts 0.989 0.989

IR fibroblasts 0.993 0.994
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ARCH3D predicts Pore-C directly from Hi-C

GM12878
216M Hi-C contacts

BJ Fibroblast
106M Hi-C contacts

BJ fibroblast Hi-C was not contained in pre-training corpus—totally new to ARCH3D!



Perturbations in genome architecture: extra chr7
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Braun, Rüdiger, et al. "Single chromosome aneuploidy induces genome-wide perturbation of nuclear organization and gene expression." Neoplasia 21.4 (2019): 401-412.



Introduction of a third chromosome 7 yields 
genome-wide disruptions in structure
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Control Trisomy 7

Chr 14

Chr 4

• Changes in compartmentalization
• Fewer TADs



Perturbation results
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In silico 
perturbation

Smaller chromosomes 
show greater sensitivity 
to perturbations
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Conclusions
• The organization of ARCH3D’s embedding space mirrors that of the nucleus

• ARCH3D enhances the coverage of low-coverage experiments

• ARCH3D identifies multi-way interactions from Hi-C data

Conclusions and future work
ngalioto@umich.edu
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Funding
• DARPA

• TwinCell Blueprint: Foundation for AI-Assisted Cell Reprogramming

• AFOSR
• Data-guided Learning and Control of Higher Order Structures

• Integrate ARCH3D embeddings with transcriptomic embeddings

• Extend to single-cell Hi-C data

Future work
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