Large-scale feature learning of chromosome conformation for genome modeling

Nick Galioto

Gilbert S. Omenn Department of Computational Medicine and Bioinformatics, University of Michigan Argonne National Laboratory Seminar Presentation

November 17, 2025

My background

Computational modeling and time-series forecasting

AI for Science

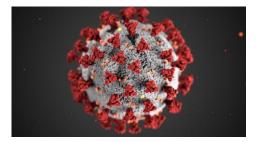
B.E. Mechanical Engineering

2014-2018

M.S., PhD, Postdoc Aerospace Engineering 2018—2024 Postdoc Bioinformatics 2024—Present

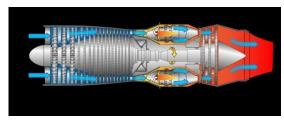
The need for data-driven estimation of dynamics is widespread

- Epidemiology (SIR model)
- Predicting medical events
 - Blood glucose levels in diabetic patients
- Weather and climate
- Industrial and manufacturing processes
- Financial markets
- Traffic patterns
- Energy grid demands
- Model predictive control
- Surrogate modeling
 - Molecular dynamics
 - Fluid dynamics

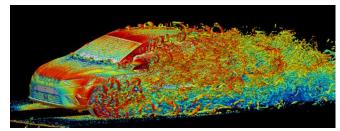


U.S. Center for Disease and Control, 2020.

Earth Science at Ames. National Aeronautics and Space Administration, 2017.



Naji, Anees. Polytechnic University of Bucharest, 2017.



Large-Scale Computational Fluid Dynamics.
Barcelona Supercomputing Center, 2023.

Vigilancia Quadcopter. TechnoSys, Embedded Systems (P) Ltd., 2023.

Adhikari, Ganesh. Investopaper. Investopaper, 2023.

Sullivan, Justin. WBUR. WBUR, 2023.

Hidden Markov model

Joint parameter-state estimation with stochastic dynamics

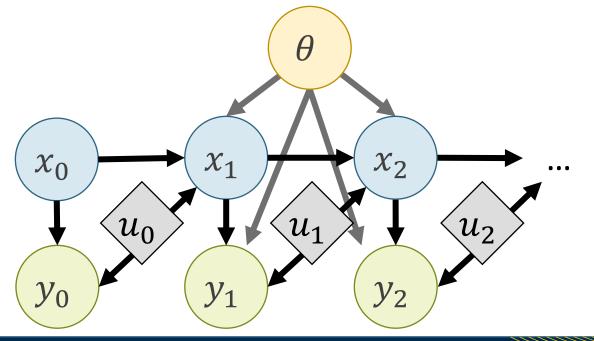
$$X_k \in \mathbb{R}^{d_x}, \quad Y_k \in \mathbb{R}^{d_y}, \quad \theta = (\theta_{\Psi}, \theta_h, \theta_{\Sigma}, \theta_{\Gamma}) \in \mathbb{R}^{d_{\theta}}$$

$$X_k = \Psi(X_{k-1}, u_{k-1}, \theta_{\Psi}) + \xi_k; \quad \xi_k \sim \mathcal{N}(0, \Sigma(\theta_{\Sigma}))$$

$$Y_k = h(X_k, \theta_h) + \eta_k; \qquad \eta_k \sim \mathcal{N}(0, \Gamma(\theta_\Gamma))$$

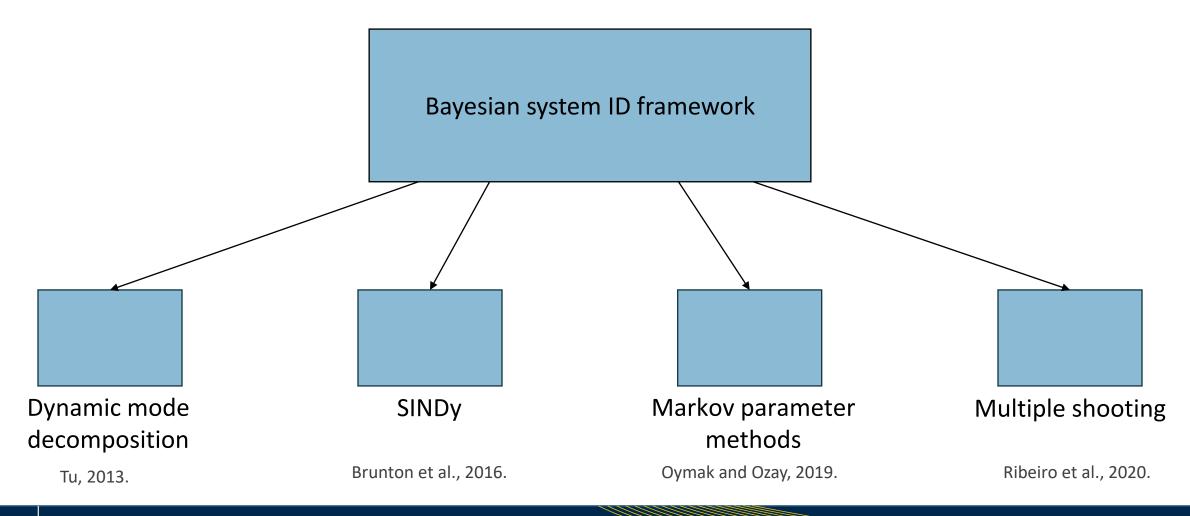
The process noise term ξ_k accounts for model error

- Parameter error
- Integration error
- Insufficient model expressiveness



- 1. Parameter Uncertainty
- 2.) Model Uncertainty
- 3. Measurement Uncertainty

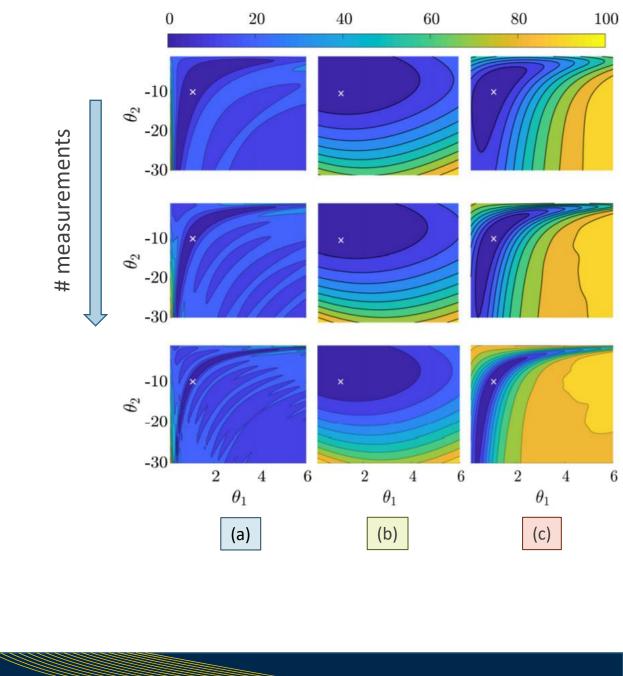
Bayesian framework gives conditions for optimality of many popular approaches



Bayesian framework yields advantageous changes to the objective function surface

- (a) Long time horizon simulation
- (b) Short time horizon simulation
- (c) PhD work
 - Optimal combination of (a) and (b)

	(a)	(b)	(c)
Assesses long-term behavior	√	×	✓
Smooths local minima	×	✓	✓
Increased confidence with data	√	×	√



Publications

Journals

- Mustaev, Artem, Nicholas Galioto, et al. "A switching Kalman filter approach to online mitigation and correction of sensor corruption for inertial navigation." arXiv preprint arXiv:2412.06601 (2024). (under review at ION Navigation)
- Galioto, Nicholas, et al. "Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and reduced-order modeling." Computer Methods in Applied Mechanics and Engineering 430 (2024): 117194.
- **Galioto, Nicholas**, and Alex Arkady Gorodetsky. "Likelihood-based generalization of Markov parameter estimation and multiple shooting objectives in system identification." *Physica D: Nonlinear Phenomena* 462 (2024): 134146.
- Galioto, Nicholas, and Alex Arkady Gorodetsky. "Bayesian system ID: Optimal management of parameter, model, and measurement uncertainty." Nonlinear Dynamics, vol. 102, no. 1, 2020, pp. 241-267.

Conferences

- Sharma, Harsh*, Nicholas Galioto*, Alex Arkady Gorodetsky, and Boris Kramer. "Bayesian Identification of Nonseparable Hamiltonian Systems Using Stochastic Dynamic Models." 2022 61st IEEE Conference on Decision and Control (CDC). IEEE, 2022.
- **Galioto, Nicholas**, and Alex Arkady Gorodetsky. "A new objective for identification of partially observed linear time-invariant dynamical systems from input-output data." Learning for Dynamics and Control. PMLR, 2021.
- Galioto, Nicholas, and Alex Arkady Gorodetsky. "Bayesian identification of Hamiltonian dynamics from symplectic data." 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020.

^{*} Denotes equal contribution

Outline

- Cell reprogramming
- Introduction to Hi-C data
- ARCH3D: Architecture and pre-training
- Results
- Conclusions and future work

Introduction

Cell reprogramming

High-throughput chromosome conformation capture (Hi-C)

ARCH3D: Architecture and pre-training

Results

Conclusions and future work

Collaborators

Faculty and staff:

Indika Rajapakse Mathematics, Bioinformatics

Alex Gorodetsky
Aerospace Engineering

PhD students:

Lindsey Muir
Bioinformatics

Walter Meixner Experimentalist

Alumni:

Cooper Stansbury iReprogram

Joshua Pickard
Broad Institute

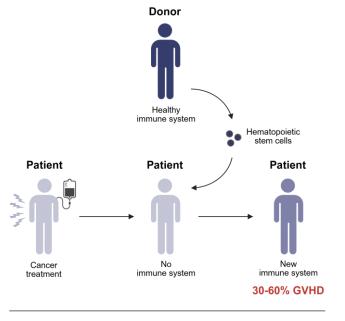
Jillian Cwycyshyn
Bioinformatics

Ram Prakash Bioinformatics

The ultimate goal: my cells, my cure!

Donnall Thomas

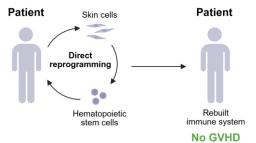
Invented Bone-marrow Transplant Fred Hutchinson Cancer Center 1990 Nobel Prize in Medicine



PROBLEM

GVHD is when the patient cells attack the donor cells

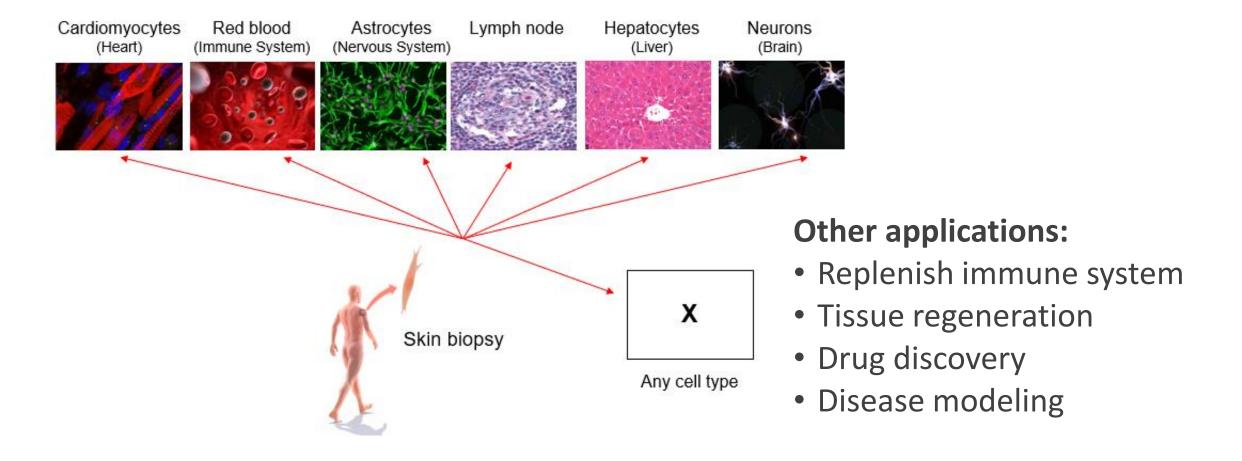
SOLUTIONAutologous cell reprogramming



Bone-marrow transplant is the **Treatment for the Treatment**

Holtan, Shernan G., et al. "Disease progression, treatments, hospitalization, and clinical outcomes in acute GVHD: a multicenter chart review." Bone marrow transplantation 57.10 (2022): 1581-1585.

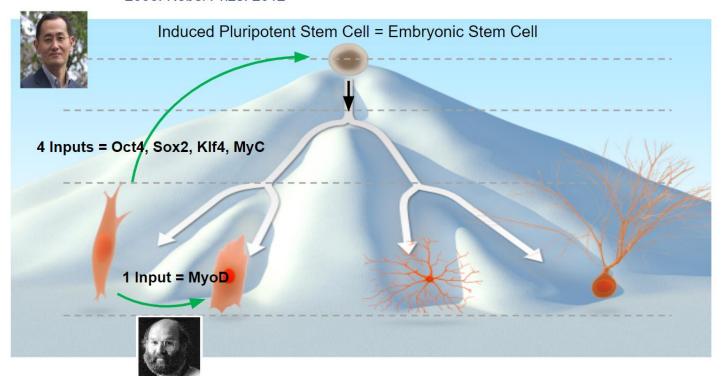
Cell reprogramming



Cell reprogramming can be achieved through introduction of expertly-chosen transcription factors (TFs)

Shinya Yamanaka: iPSC reprogramming (INDIRECT)

2006: Nobel Prize: 2012

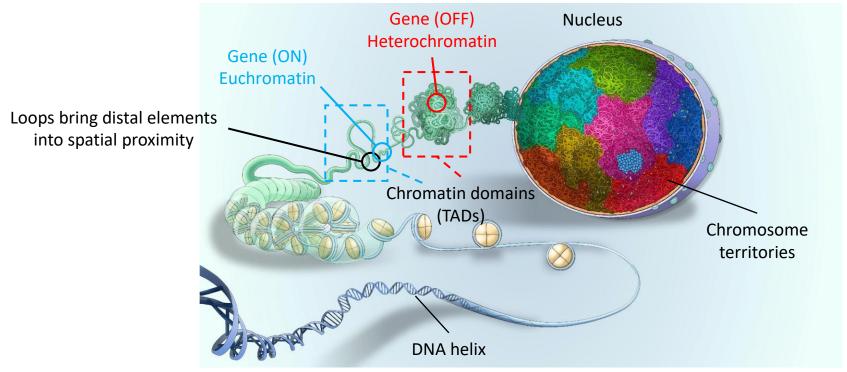


Challenges:

- Experiments are costly
- The set of possible TFs is vast
- Reprogramming efficiency remains low (1-3%)

Harold Weintraub: DIRECT Reprogramming 1989: (1945-1995)

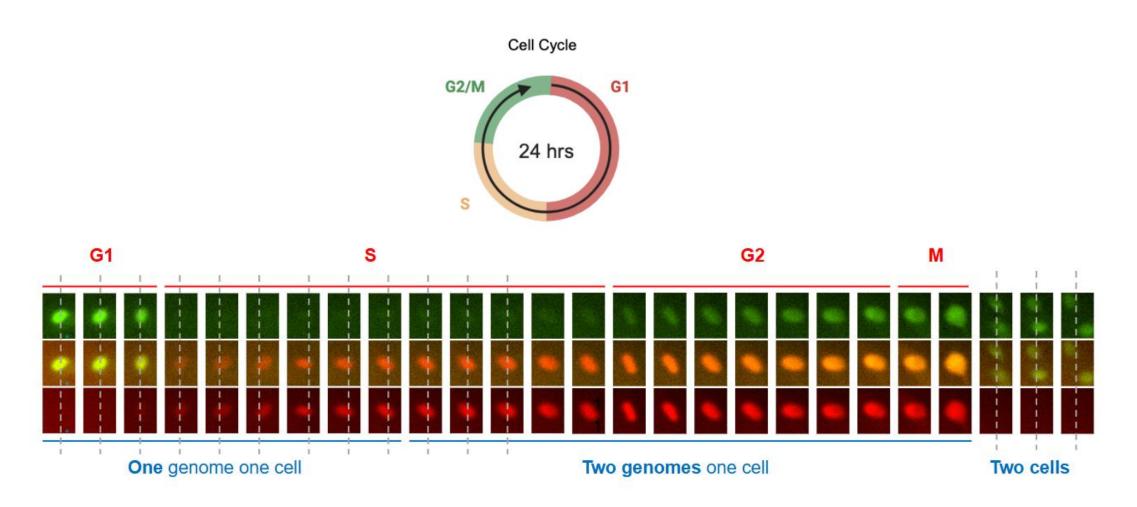
Genome structure regulates cell identity



Adapted from: Misteli, Tom. "The self-organizing genome: principles of genome architecture and function." Cell 183.1 (2020): 28-45.

- Chromosomes occupy distinct regions of the nucleus known as "chromosome territories"
- Active genes are located in areas of loosely-packed chromatin (euchromatin)
- Topologically associating domains (TADs) insulate sections of the genome from each other
- Enhancers are brought into proximity of promoters through chromatin looping

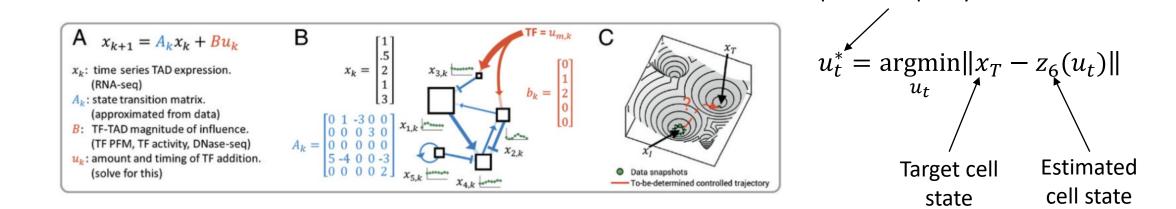
The genome is a dynamical system



Existing method: Data-guided control (DGC)

Formulates cell reprogramming as a control problem

- State is represented using RNA-seq data, grouped into TADs
- Selection of TFs is modeled as a control policy



• Limitation: Cannot account for changes in TAD structure

Ronquist, Scott, et al. "Algorithm for cellular reprogramming." Proceedings of the National Academy of Sciences 114.45 (2017): 11832-11837.

Optimal TF policy

Foundation models show promise in producing multi-purpose representations of biological data

DNA Sequence

- GenSLM
- AlphaGenome
- Evo2

Transcriptomic

- Geneformer
- scGPT
- scBERT

Protein sequence

- AlphaFold
- ESM-2, 3

ATAC-seq + DNA

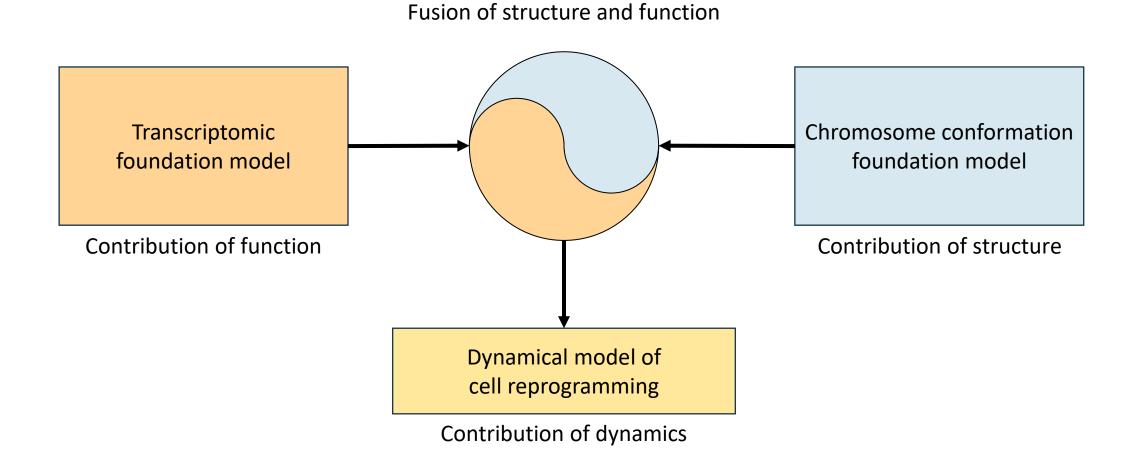
- EPCOT
- GET

Spatial transcriptomics

- scGPT-spatial
- Nicheformer

Genome structure remains underexplored!

Al-powered state representation



Introduction
Cell reprogramming

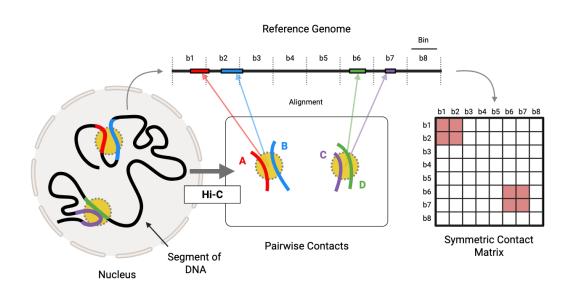
High-throughput chromosome conformation capture (Hi-C)

ARCH3D: Architecture and pre-training

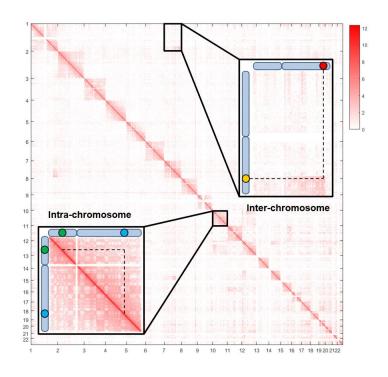
Results

Conclusions and future work

Hi-C records the number of times two loci come into contact



•Each pixel can be interpreted as a contact frequency

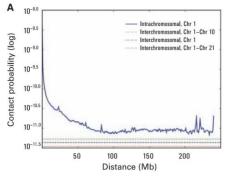


Block diagonal structure reflects chromosome territories

Lieberman-Aiden, Erez, et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." science 326.5950 (2009): 289-293.

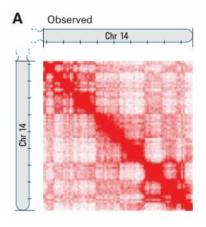
Original Hi-C paper

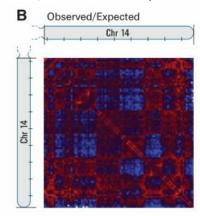
Plaid pattern reflects A/B compartmentalization of genome structure

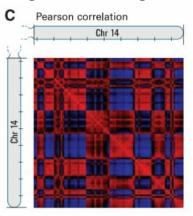


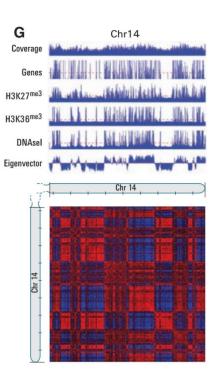
Contact probability follows a power-law scaling

Dividing every diagonal by its average (observed/expected) mitigates the diagonal dominance





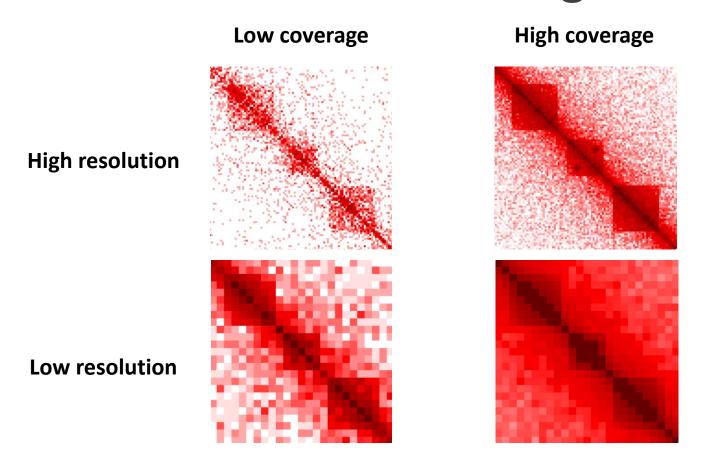




The first eigenvalue correlates with chromatin accessibility

Lieberman-Aiden, Erez, et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." Science 326.5950 (2009): 289-293.

Hi-C: Resolution and coverage



- Low coverage cannot capture fine-scale structures (e.g., loops)
- However, low coverage can represent low-resolution Hi-C with similar accuracy as the high-coverage

Introduction
Cell reprogramming
High-throughput chromosome conformation capture (Hi-C)

ARCH3D: Architecture and pre-training

Results
Conclusions and future work

Pre-training corpus

Consortia:

- 4DNucleome
- ENCODE

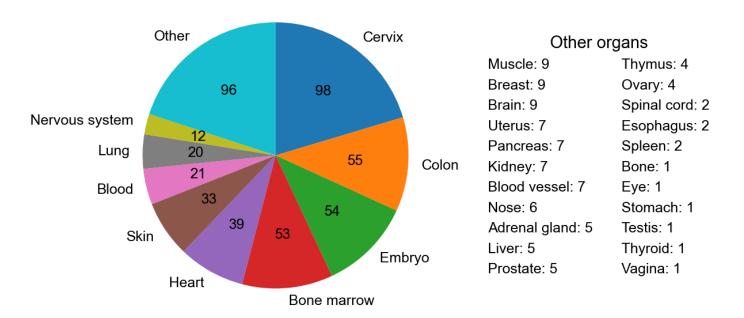
Experiments:

- In-situ Hi-C
- Dilution Hi-C
- DNase Hi-C

Preprocessing:

- KR normalization
- Observed/expected

Distribution of Samples by Organ



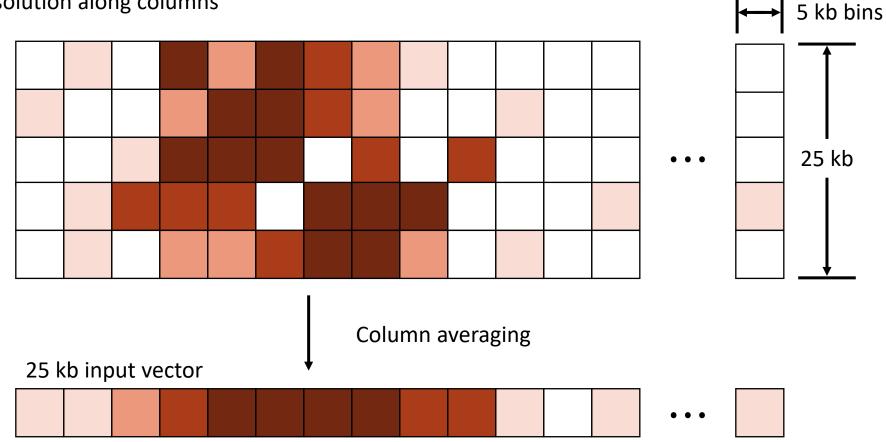
481 total experiments (> 10M contacts)

Tokenization scheme

- Represents genomic loci, not patches
- Permits loci of any length (multiple of 5kb)
- Retains high resolution along columns

Locus lengths:

- 5 kb
- 10 kb
- 25 kb
- 50 kb
- 100 kb
- 250 kb
- 500 kb
- 1 Mb



Biology-informed encodings provide the model with positional information

Genomic locus:

chr: bp_0

 $chr: bp_f$

Base pair encodings

 $s(bp_0)$ $s(bp_f)$

s is a vector-valued sinusoidal encoding with ith entry defined as:

if i is even:

if i is odd:

$$s_i(bp) = \sin\left(\frac{bp}{1000^{6i/d_{model}}}\right), \qquad s_i(bp) = \cos\left(\frac{bp}{1000^{6i/d_{model}}}\right)$$

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Chromosomal encodings

1
2
3
4

:

22

Final positional encoding:

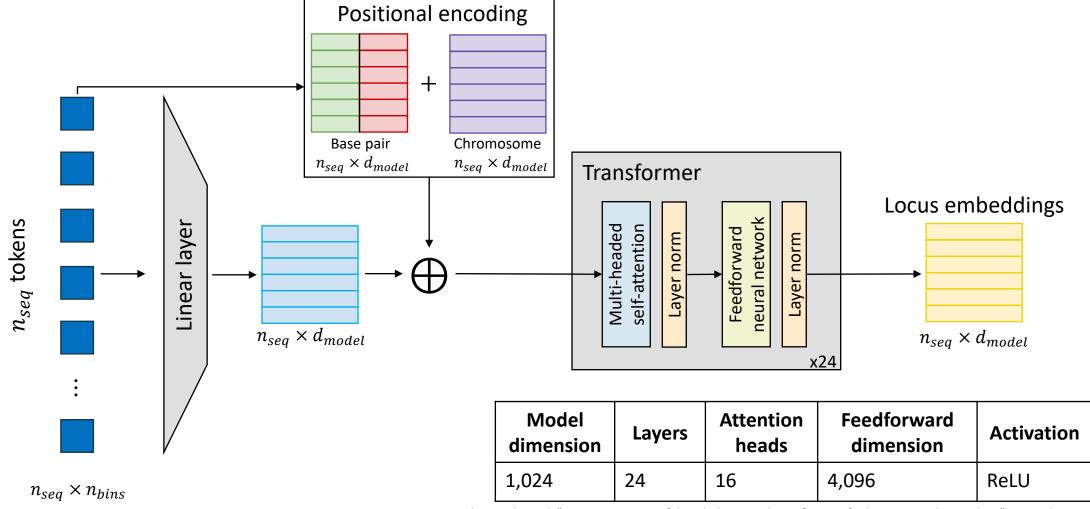
 $s(bp_0)$

 $s(bp_f)$

+

chr

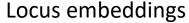
ARCH3D architecture

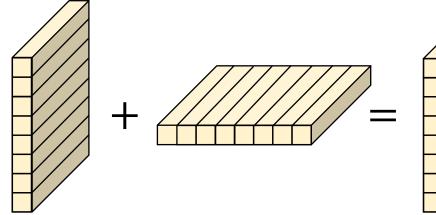


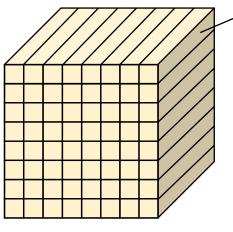
Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." Proceedings of the 2019 conference of the NAACL: human language technologies, volume 1 (long and short papers). 2019.

Task head architecture

Locus embeddings Locus



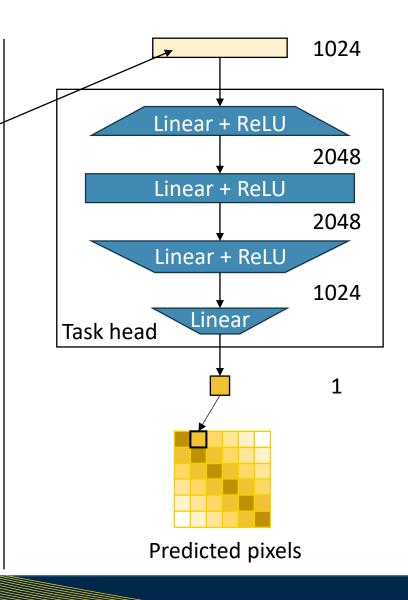




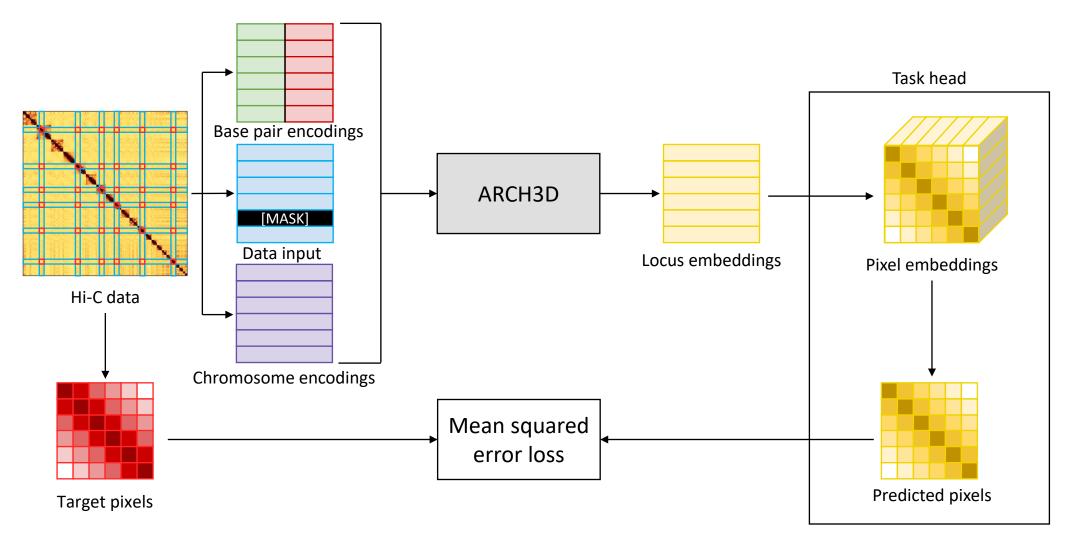
Locus embeddings are transformed to pixel embeddings through pairwise addition

$$p_{ij} = \ell_i + \ell_j$$
, $i, j = 1, ..., n_{seq}$

 p_{ij} is the ijth pixel embedding and ℓ_i the ith locus embedding



Pre-training task: Masked locus modeling



Training approach

University of Michigan Lighthouse HPC Cluster

17 nodes, each with:

- 8 NVIDIA H100 GPUs (80 GB VRAM)
- 1 TB RAM
- 96 cores

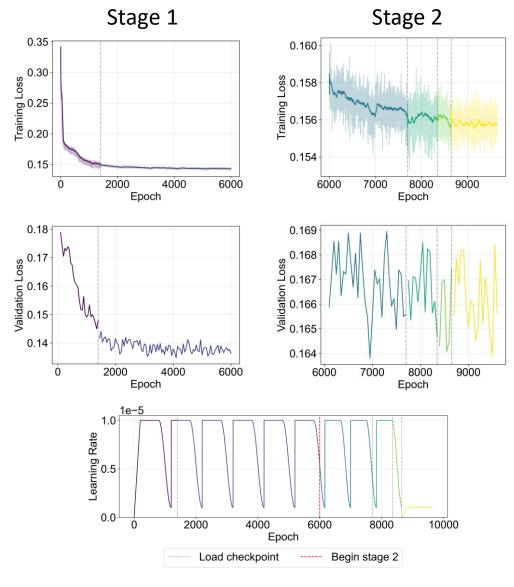
Optimizer: Adam

Learning rate schedule:

- Linear warmup to 1e-5 over 500 steps
- 2. Constant 1e-5 for 3,000 steps
- Cosine anneal to 1e-6 over
 2,000 steps
- 4. Repeat 2—3

Stage	GPUs	RAM (TB)	Epochs	Time (h)	GPU hours
1	8	1.0	6,000	504	4,032
2	16/32	3.2 / 4.0	5,700	384	9,600

Stage 1: 194 Hi-C experiments; **Stage 2:** 481 Hi-C experiments



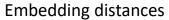
In final run, learning rate held at 10% of max.

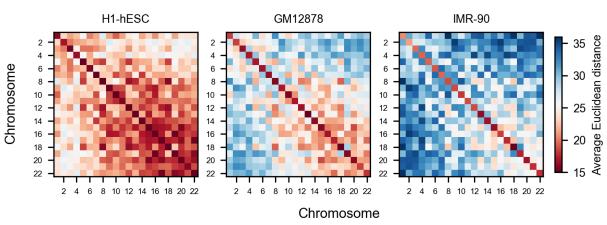
Introduction
Cell reprogramming
High-throughput chromosome conformation capture (Hi-C)
ARCH3D: Architecture and pre-training

Results

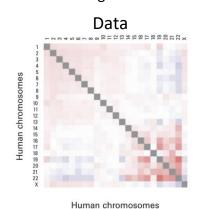
Conclusions and future work

Positioning of embeddings reflects genomic structure



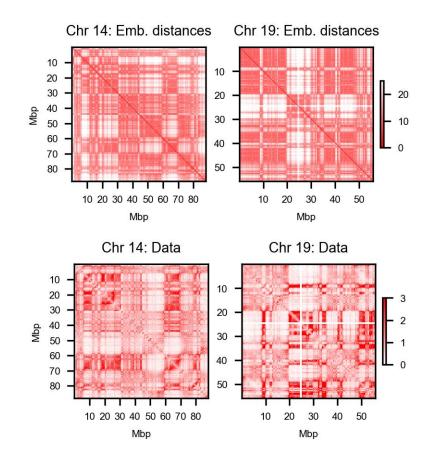


Average distance between embeddings within and across chromosomes



Main observations:

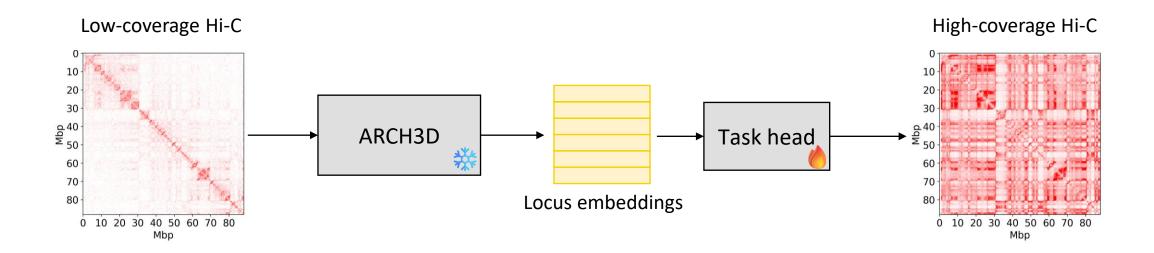
- Diagonal blocks show shortest average distance, similar to chromosome territories
- 2. More differentiated cell lines show greater distance between inter-chromosomal embeddings
- 3. Embeddings from smaller chromosomes are positioned closer together than embeddings from larger chromosomes, mirroring experimental data



Average inter-chromosomal contact probabilities

Lieberman-Aiden, Erez, et al. "Comprehensive mapping of long-range interactions reveals folding principles of the human genome." science 326.5950 (2009): 289-293.

Resolution enhancement training scheme



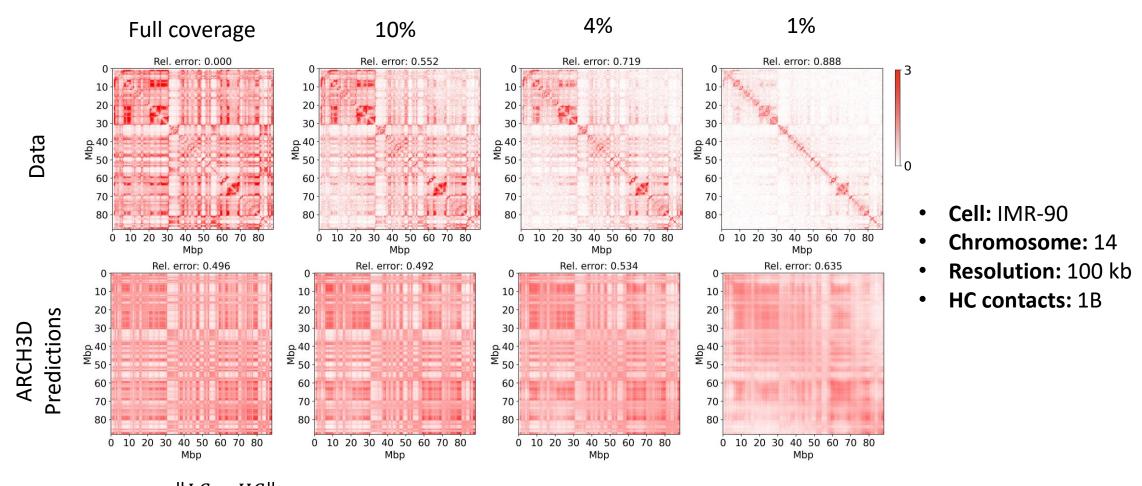
Training:

• **Cell:** GM12878

• Coverage: 1%, 10%, 100%

• Locus lengths: 10kb, 25kb, 50kb, 100kb, 500kb, 1Mb

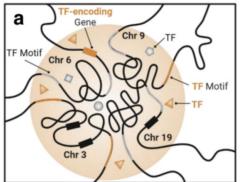
ARCH3D predictions degrade gracefully with decreasing coverage

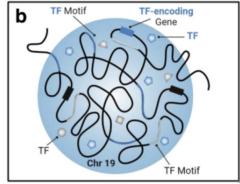


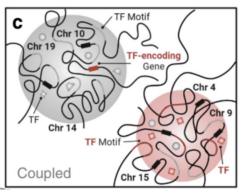
Rel. error = $\frac{||LC - HC||_F}{||HC||_F}$, where LC is data/predictions from low-coverage and HC is high-coverage data

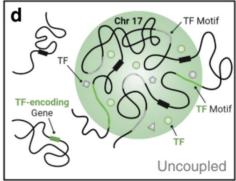
Evidence suggests genes cluster into transcription factories

- Gene transcription is localized to a small number of sites known as "transcription factories"
- Genes within a transcription factory are co-regulated
- Pore-C records multi-way interactions using long-read sequencing





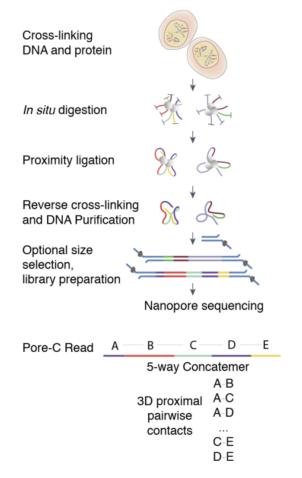


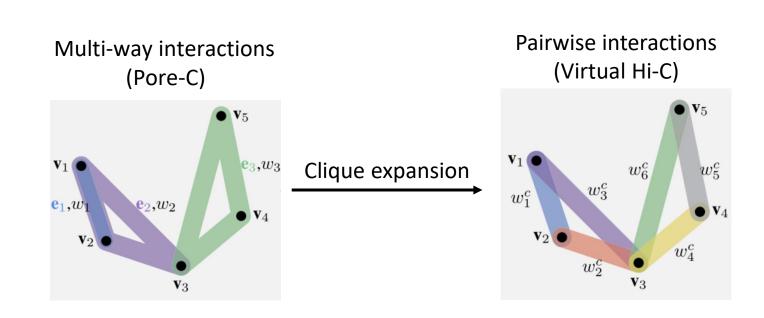


Dotson, Gabrielle A., et al. "Deciphering multi-way interactions in the human genome." *Nature Communications* 13.1 (2022): 5498.

Pore-C creates a hypergraph

Experimental procedure

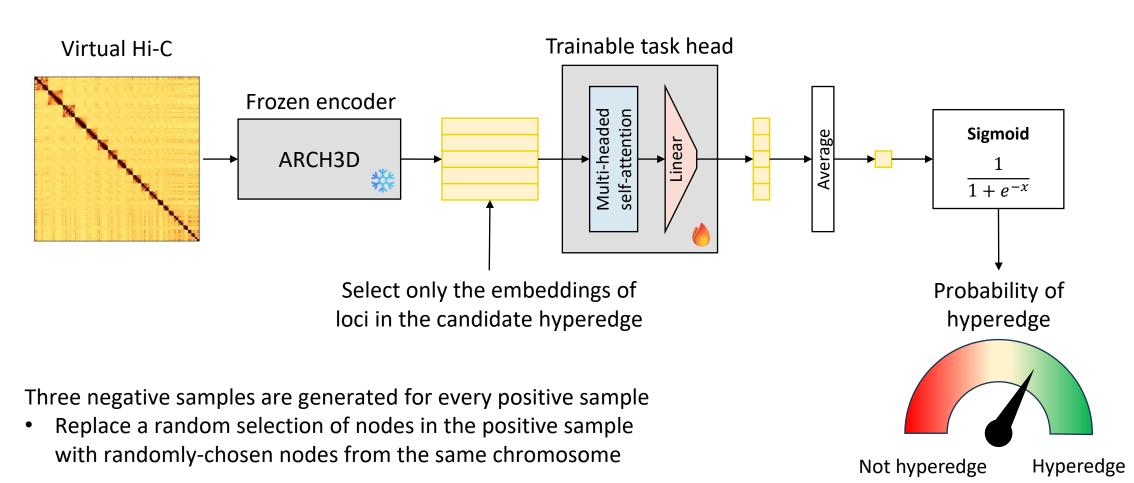




Clique-expansion gives an approximation of Hi-C referred to as "virtual Hi-C"

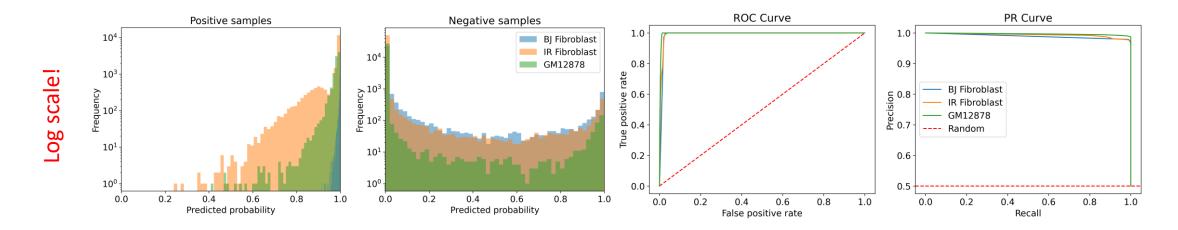
Surana, Amit, Can Chen, and Indika Rajapakse. "Hypergraph similarity measures." IEEE Transactions on Network Science and Engineering 10.2 (2022): 658-674.

Hyperedge prediction training scheme



Zhang, Ruochi, and Jian Ma. "MATCHA: probing multi-way chromatin interaction with hypergraph representation learning." *Cell systems* 10.5 (2020): 397-407.

Prediction of multi-way interactions generalizes to unseen cell lines using virtual Hi-C



Training set:

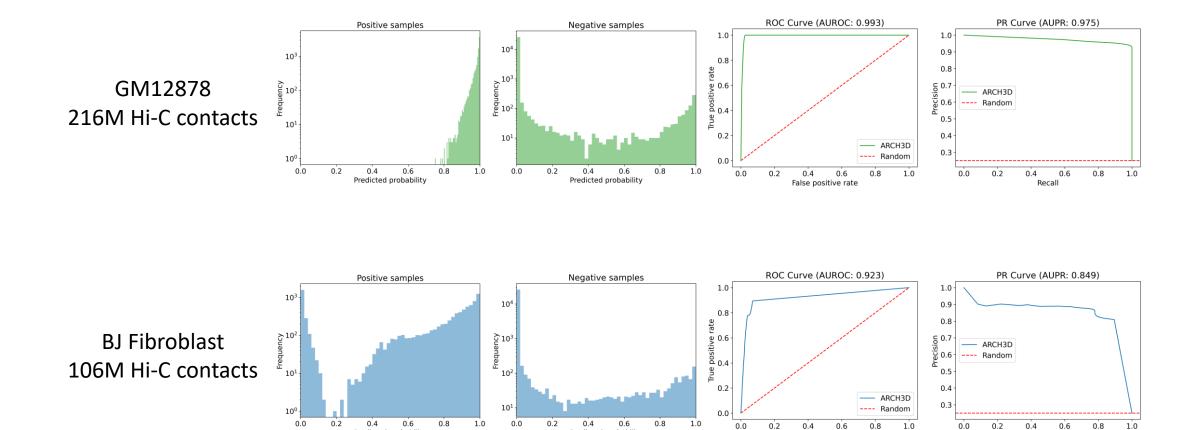
GM12878

Testing set:

- BJ fibroblasts
- IR fibroblasts

	AUROC	AUPR
GM12878	0.997	0.997
BJ fibroblasts	0.989	0.989
IR fibroblasts	0.993	0.994

ARCH3D predicts Pore-C directly from Hi-C



BJ fibroblast Hi-C was not contained in pre-training corpus—totally new to ARCH3D!

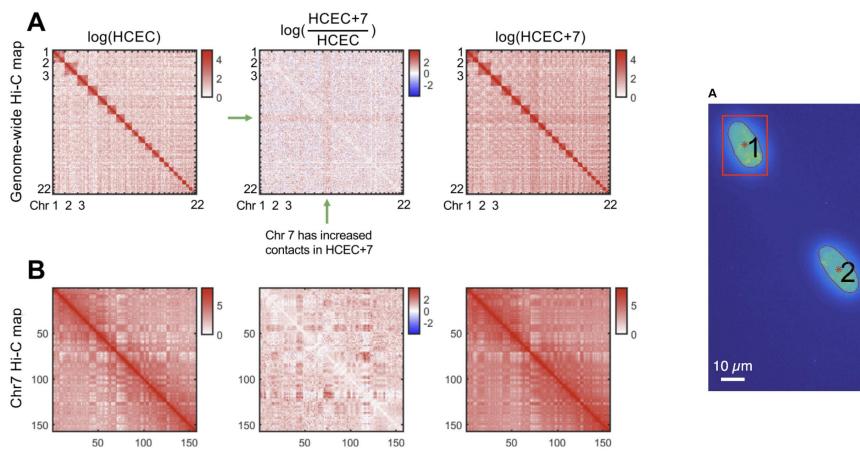
Predicted probability

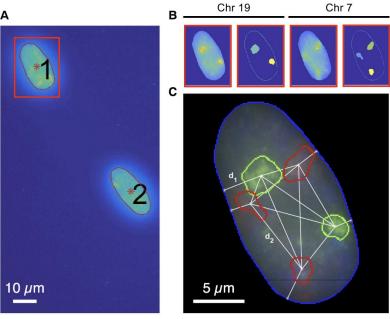
False positive rate

Predicted probability

Recall

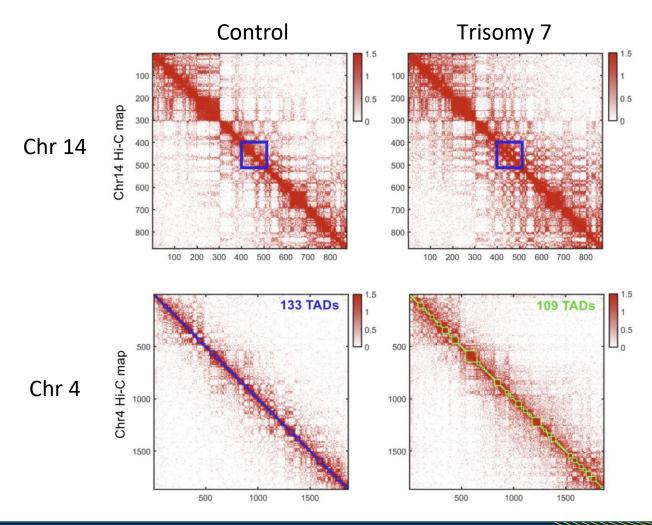
Perturbations in genome architecture: extra chr7





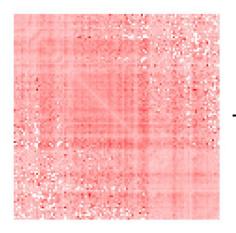
Braun, Rüdiger, et al. "Single chromosome aneuploidy induces genome-wide perturbation of nuclear organization and gene expression." *Neoplasia* 21.4 (2019): 401-412.

Introduction of a third chromosome 7 yields genome-wide disruptions in structure

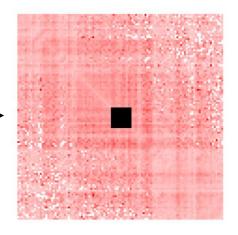


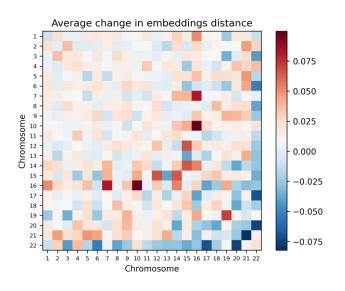
- Changes in compartmentalization
- Fewer TADs

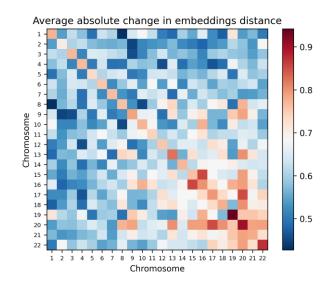
Perturbation results



In silico perturbation







Smaller chromosomes show greater sensitivity to perturbations

Introduction
Cell reprogramming
High-throughput chromosome conformation capture (Hi-C)
ARCH3D: Architecture and pre-training
Results

Conclusions and future work

Conclusions

- The organization of ARCH3D's embedding space mirrors that of the nucleus
- ARCH3D enhances the coverage of low-coverage experiments
- ARCH3D identifies multi-way interactions from Hi-C data

Future work

- Integrate ARCH3D embeddings with transcriptomic embeddings
- Extend to single-cell Hi-C data

Funding

- DARPA
 - TwinCell Blueprint: Foundation for AI-Assisted Cell Reprogramming
- AFOSR
 - Data-guided Learning and Control of Higher Order Structures

