Correcting for Error in Reduced-Order Modeling Using Experimental Partial Observations and Bayesian System Identification

Nick Galioto¹, Harsh Sharma², Boris Kramer², and Alex Gorodetsky¹ ¹ Department of Aerospace Engineering, University of Michigan ² Department of Mechanical and Aerospace Engineering, University of California San Diego SIAM Conference on Uncertainty Quantification 2024, Trieste, Italy February 28, 2024

Introduction

Motivation

- High-dimensional systems are ubiquitous within science and engineering
- Models often have unknown problem-dependent parameter values
 - For example, turbulence model coefficients
- Traditional parameter estimation and sampling methods do not scale well for expensive forward models

Goals:

- 1. Use an inexpensive model to infer parameter values of the expensive high-dimensional model
- 2. Embed prior physics knowledge within the learning process

https://hiliftpw.larc.nasa.gov/index.html

2

Highlights

We present an algorithm that:

- Leverages reduced-order modeling to efficiently perform parameter estimation of high-dimensional systems
- Accounts for various sources of uncertainty to yield robust estimation under high multiplicative measurement noise
- Enforces physical knowledge of Hamiltonian systems within the estimation procedure

Outline

- 1. Probabilistic inference
- 2. Dimension reduction
- 3. Structure preservation
- 4. Results
- 5. Conclusions and future work

Introduction Probabilistic inference

Dimension reduction Structure preservation Results Conclusions and future work

High-level problem formulation

System of interest $\{\mathbf{x}_k \in \mathbb{R}^n | k = 1, ..., N\}$

$$\mathbf{y}_k = h(\mathbf{x}_k) + \eta_k$$

Data
$$\mathcal{Y}_N = \{\mathbf{y}_k \in \mathbb{R}^m | k = 1, ..., N\}$$

 η_k can represent either:

• Model uncertainty (simulation data)

• Sensor noise (experimental data)

Step 1: Learn a mapping between full- and reduced-dimensional spaces

Step 2: Learn dynamics in the reduced-dimensional space

$$\begin{aligned} \tilde{\mathbf{x}}_k &= \Psi(\tilde{\mathbf{x}}_{k-1}, \theta) \\ \mathbf{y}_k &= h(\tilde{\mathbf{x}}_k, \theta) \end{aligned}$$

Bayesian system identification

$$\mathbf{x}_{k} = \Psi(\mathbf{x}_{k-1}, \theta) + \xi_{k-1}, \quad \xi_{k-1} \sim (0, \Sigma(\theta))$$
$$\mathbf{y}_{k} = h(\mathbf{x}_{k}, \theta) + \eta_{k}, \qquad \eta_{k} \sim (0, \Gamma(\theta))$$

Sources of error/uncertainty ξ : Model uncertainty η : Measurement uncertainty θ : Parameter uncertainty • Modeled by $\pi(\theta|\mathcal{Y}_N)$

Galioto, Nicholas, and Alex Arkady Gorodetsky. "Bayesian system ID: optimal management of parameter, model, and measurement uncertainty." *Nonlinear Dynamics* 102.1 (2020): 241-267.

Bayesian system identification algorithm

for
$$i = 1, ..., M$$
 MCMC
Propose sample θ
Evaluate posterior: $\pi(\theta|\mathcal{Y}_N) = \pi(\theta) \prod_{k=1}^n \mathcal{L}_k(\theta; \mathcal{Y}_k)$
for $k = 0, ..., N - 1$ Bayesian
Predict: $\pi(\mathbf{x}_{k+1}|\mathcal{Y}_k, \theta) = \int \pi(\mathbf{x}_{k+1}|\mathbf{x}_k, \theta)\pi(\mathbf{x}_k|\mathcal{Y}_k, \theta)d\mathbf{x}_k$ filtering
Marginalize: $\mathcal{L}_{k+1}(\theta; \mathcal{Y}_{k+1}) = \int \pi(\mathbf{y}_{k+1}|\mathbf{x}_{k+1}, \theta)\pi(\mathbf{x}_{k+1}|\mathcal{Y}_k, \theta)d\mathbf{x}_{k+1}$
Update: $\pi(\mathbf{x}_{k+1}|\mathcal{Y}_{k+1}, \theta) = \frac{\pi(\mathbf{y}_{k+1}|\mathbf{x}_{k+1}, \theta)\pi(\mathbf{x}_{k+1}|\mathcal{Y}_k, \theta)}{\pi(\mathbf{y}_{k+1}|\mathcal{Y}_k, \theta)}$
end for
Accept θ with Metropolis-Hastings probability; otherwise reject
end for

Särkkä, S. (2013). Bayesian filtering and smoothing (No. 3). Cambridge University Press.

Introduction Probabilistic inference

Dimension reduction

Structure preservation Results Conclusions and future work

Challenge of high dimensions

Filtering algorithms have a computational complexity of $O(N(n^3 + m^3))$

- *N*: number of data
- *n*: state dimension
- *m*: measurement dimension

For computational feasibility, we must reduce the dimensions of:

- the state **x**
- the measurements **y**

 $= (\mathbf{\Phi}\mathbf{\Phi}^{\top} - \mathbf{I})\mathbf{y}_{k}$

 $\hat{\mathbf{y}}_k - \bar{\mathbf{y}}_k = \varepsilon_k + \eta_k$

Projection error

ngalioto@umich.edu

Stochastic uncertainty

 $\eta_k = \overline{\mathbf{y}}_k - \mathbf{y}_k$

Deterministic uncertainty

 $\varepsilon_k = \hat{\mathbf{y}}_k - \mathbf{y}_k$

Truth

Projection introduces additional uncertainty

11

Modeling uncertainty in the reduced-order system

Dynamics:

- 1. Define a low-dimensional state $\tilde{\mathbf{x}}_{k+1} = \mathbf{\Phi}^{\top}(\varepsilon, \eta) \mathbf{x}_k$
- 2. Model dynamics in the lowdimensional space

$$\tilde{\mathbf{x}}_{k+1} = \tilde{\Psi}(\tilde{\mathbf{x}}_k(\varepsilon,\eta),\theta) + \xi_k$$

- ξ_k represents model-form uncertainty
- 3. Simplify uncertainty form

$$\widetilde{\mathbf{x}}_{k+1} = \widetilde{\Psi}(\widetilde{\mathbf{x}}_k, \theta) + \widetilde{\xi}_k$$

Measurements:

- 1. Define low-dimensional measurements $\tilde{\mathbf{y}}_k = \mathbf{\Phi}^{\top}(\varepsilon, \eta) \mathbf{y}_k$ $= \mathbf{\Phi}^{\top}(\varepsilon, \eta) (\mathbf{x}_k + \eta_k)$ $= \tilde{\mathbf{x}}_k(\varepsilon, \eta) + \mathbf{\Phi}^{\top}(\varepsilon, \eta) \eta_k$
- 2. Simplify uncertainty form $\widetilde{\mathbf{y}}_k = \widetilde{\mathbf{x}}_k + \widetilde{\eta}_k$

 $\tilde{\xi}_k$ and $\tilde{\eta}_k$ represent the *effective* noise

Inference in reduced dimensions

Introduction Probabilistic inference Dimension reduction

Structure preservation

Results Conclusions and future work

Hamiltonian systems

Hamiltonian is a scalar-valued function $H(\mathbf{q}, \mathbf{p}) = T(\mathbf{q}, \mathbf{p}) + V(\mathbf{q}, \mathbf{p})$

Time derivatives are derived from Hamiltonian

$$\dot{\mathbf{q}} = \frac{\partial H(\mathbf{q}, \mathbf{p})}{\partial \mathbf{p}} \qquad \dot{\mathbf{p}} = -\frac{\partial H(\mathbf{q}, \mathbf{p})}{\partial \mathbf{q}}$$

Properties of Hamiltonian systems

- Conservation
- Reversibility
- Symplecticity

Objective: Design $\widetilde{\Psi}$ to enforce these physical phenomena

- $\mathbf{p} \in \mathbb{R}^d$: generalized momentum
- T: kinetic energy
- V: potential energy

Cotangent lift: symplectic model reduction

Form snapshot matrix

$$\mathbf{Y} = [\mathbf{q}_1 \ \mathbf{q}_2 \ \cdots \ \mathbf{q}_N \ \mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_N] \in \mathbb{R}^{d \times 2N}$$

Compute the truncated SVD

$$\mathbf{Y} \approx \begin{bmatrix} \mathbf{U} \\ \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{V}^{\mathsf{T}} \\ \mathbf{V}^{\mathsf{T}} \end{bmatrix}$$

Construct the symplectic projection matrix

$$\mathbf{\Phi} = \begin{bmatrix} \mathbf{U} & \mathbf{0} \\ \mathbf{0} & \mathbf{U} \end{bmatrix} \in \mathbb{R}^{2d \times 2r}$$

Peng, Liqian, and Kamran Mohseni. "Symplectic model reduction of Hamiltonian systems." SIAM Journal on Scientific Computing 38.1 (2016): A1-A27.

Hamiltonian operator inference (H-OpInf)

Given a parameterized form of a high-dimensional Hamiltonian

$$H(\mathbf{q}, \mathbf{p}, \theta) = H_{quad}(\mathbf{q}, \mathbf{p}, \mathbf{q}_z, \mathbf{p}_z, \dots) + H_{nl}(\mathbf{q}, \mathbf{p}, \theta_{nl})$$

H-OpInf yields the reduced-order Hamiltonian using Φ

 $\widetilde{H}(\widetilde{\mathbf{q}},\widetilde{\mathbf{p}},\theta) = \widetilde{\mathbf{q}}^{\mathsf{T}} \mathbf{D}_{q}(\theta_{quad})\widetilde{\mathbf{q}} + \widetilde{\mathbf{p}}^{\mathsf{T}} \mathbf{D}_{p}(\theta_{quad})\widetilde{\mathbf{p}} + \mathbf{\Phi}^{\mathsf{T}} H_{nl}(\mathbf{\Phi}\widetilde{\mathbf{q}},\mathbf{\Phi}\widetilde{\mathbf{p}},\theta_{nl})$

The time derivatives are derived as

$$\dot{\tilde{\mathbf{q}}} = \mathbf{D}_{p}(\theta_{quad})\tilde{\mathbf{p}} + \mathbf{\Phi}^{\top} \frac{\partial H_{nl}}{\partial \mathbf{p}} (\mathbf{\Phi}\tilde{\mathbf{q}}, \mathbf{\Phi}\tilde{\mathbf{p}}, \theta_{nl})$$
$$\dot{\tilde{\mathbf{p}}} = -\mathbf{D}_{q}(\theta_{quad})\tilde{\mathbf{q}} - \mathbf{\Phi}^{\top} \frac{\partial H_{nl}}{\partial \mathbf{q}} (\mathbf{\Phi}\tilde{\mathbf{q}}, \mathbf{\Phi}\tilde{\mathbf{p}}, \theta_{nl})$$

A symplectic integrator is used to complete the symplectic propagator $\widetilde{\Psi}(\widetilde{\mathbf{q}}, \widetilde{\mathbf{p}}) \coloneqq \text{SymplecticIntegrator}(\widetilde{\mathbf{q}}, \widetilde{\mathbf{p}}, \dot{\widetilde{\mathbf{q}}}, \dot{\widetilde{\mathbf{p}}}, \Delta t)$

 Sharma, Harsh, Zhu Wang, and Boris Kramer. "Hamiltonian operator inference: Physics-preserving learning of reduced-order models for canonical Hamiltonian systems." *Physica D: Nonlinear Phenomena* 431 (2022): 133122.
 Tao, Molei. "Explicit symplectic approximation of nonseparable Hamiltonians: Algorithm and long time performance." *Physical Review E* 94.4 (2016): 043303.

Full-order

Hamiltonian H

H-OpInf [1]

Reduced-order

Hamiltonian \widetilde{H}

Time

derivatives $\dot{\tilde{q}}$, $\dot{\tilde{p}}$

Symplectic

integrator [2]

Physics-preserving

Reduced-dimensional likelihood evaluation of a highdimensional Hamiltonian system

Pre-processing

- 1. Form the snapshot matrix $\mathbf{Y} = [\mathbf{q}_1 \ \mathbf{q}_2 \ \cdots \ \mathbf{q}_n \ \mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$
- 2. Compute the symplectic projection matrix Φ with cotangent lift
- 3. Define the low-dimensional data $\tilde{\mathcal{Y}}_N = \{ \mathbf{\Phi}^\top \mathbf{y}_k | k = 1, ..., N \}$

Evaluation

- 4. Estimate Hamiltonian reduced-order model with H-OpInf
- 5. Define low-dimensional symplectic dynamics $\widetilde{\Psi}(\widetilde{\mathbf{q}}, \widetilde{\mathbf{p}})$
- 6. Define low-dimensional observations $\tilde{h}(\tilde{\mathbf{q}}, \tilde{\mathbf{p}})$
- 7. Evaluate the posterior $\pi(\theta|\tilde{\mathcal{Y}})$ using filtering algorithm

 $\pi(\theta | \tilde{\mathcal{Y}}_N)$

Symplectic

projection

Φ

High-

dimensional

data **Y**

Low-

dimensional

data $\tilde{\mathcal{Y}}_N$

Bayesian

system

identification

Introduction Probabilistic inference Dimension reduction Structure preservation **Results**

Conclusions and future work

Nonlinear Schrodinger Equation (NLSE)

$$\mathcal{H}(q,p) = \frac{1}{2} \int \left(p_z^2 + q_z^2 - \frac{\gamma}{2} (p^2 + q^2)^2 \right) dz$$

Additionally conserves mass Q_1 and momentum Q_2 $Q_1(q,p) = \int (p^2 + q^2) dz$, $Q_2(q,p) = \int (p_z q - q_z p) dz$

We attempt to learn
$$\gamma$$

 $H_{nl}(q, p, \theta) = -\frac{\theta_{\gamma}}{2}(p^2 + q^2)^2$ True $\gamma = 2$

Periodic boundary conditions with initial conditions: q(z,0) = 0 and $p(z,0) = 0.5\left(1 + 0.01\cos\left(\frac{2\pi z}{L}\right)\right)$, $z \in \left[-\frac{L}{2}, \frac{L}{2}\right]$, $L = 2\pi\sqrt{2}$ Spatial discretization d = 64

NLSE: Data generation

Measurement function: $h(\mathbf{q}_k, \mathbf{p}_k) = \begin{bmatrix} \mathbf{q}_k^\top & \mathbf{p}_k^\top \end{bmatrix}^\top$ Data: $\mathbf{y}_k = h(\mathbf{q}_k, \mathbf{p}_k)(1 + u_k), \quad u_k \sim \mathcal{U}[-0.2 \quad 0.2]$ Model: $\tilde{h}(\widetilde{\mathbf{q}}_k, \widetilde{\mathbf{p}}_k) = \begin{bmatrix} \widetilde{\mathbf{q}}_k^\top & \widetilde{\mathbf{p}}_k^\top \end{bmatrix}^\top, \quad \underline{r = 8}$ Collect N = 4000 with timestep $\Delta t = 0.005$

The algorithm learns an accurate model under high measurement uncertainty

Introduction Probabilistic inference Dimension reduction Structure preservation Results

Conclusions and future work

Conclusions

- Reduced-order modeling allows for efficient parameter estimation of high-dimensional models
- Working in reduced dimensions introduces additional uncertainty
- Modeling this added uncertainty with stationary effective noise terms can yield accurate model estimates

Future work

- Correcting inaccurate projection mappings with experimental data
- More precise tracking of uncertainty

Publications

Galioto, Nicholas, et al. "Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and reduced-order modeling." *arXiv* preprint arXiv:2401.12476 (2024).

Galioto, Nicholas, and Alex Arkady Gorodetsky. "Bayesian system ID: optimal management of parameter, model, and measurement uncertainty." *Nonlinear Dynamics* 102.1 (2020): 241-267.

Funding

AFOSR Program in Computational Mathematics FA9550-19-1-0013

