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Motivation

» Goal: learn a model of a dynamical system from time-series data

« Two primary design choices in system identification:

» Model parameterization: neural networks, basis expansions, kernel
expansions

 Objective function: least squares, regularization, etc.
» A good model structure will:

« Enforce known physics

» Reduce data requirements and fill in for missing data
« A good objective will:

» Be robust to sparse and noisy data
« Handle model inadequacy

» Generalize well beyond training data

Output
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Imperfectly known models

Oftentimes, domain knowledge can produce reliable models, but problem-
specific parameters may still be unknown

« Common in fields like structural dynamics and systems biology
(material properties, kinetic parameters, etc.)

« Data can be expensive or challenging to collect
« Need to find accurate estimates and quantify uncertainty

Contributions

Present a system ID algorithm that can:

« Structurally embed physics constraints

« Handle measurement, model, and parameter uncertainty
and their interaction

» Accurately identify parameters from sparse and noisy data

* Quantify model uncertainty
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We seek probabilistic predictions to quantify uncertainty

A B\ P
a X
Probabilistic Prediction RN
IT * LN Il'u ./" :‘ 'II ‘l
c c 5 s | /8 2 |I
P(value is x | data, information ) g ‘k* |
* o
« Data: time series, noisy and sparse X! |
 Information: conservation of energy (Hamiltonian system) o ‘
<
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What's wrong with the least squares objective?



COLLEGE OF ENGINEERING
M AEROSPACE ENGINEERING

UNIVERSITY OF MICHIGAN

One aspect: the least squares error metric can induce an
undesirable ranking of dynamical models

The accumulation of small model errors is given equal weight as Iarge model error

A=A

Time Tlme

MSE: 0.996 = Meodel I ——Hodel 2 ——Truth MSE: 0.996
How can we design an objective that prioritizes Model 1 over Model 27

Output
(@)
Output
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Existing approaches

Least squares-based objective functions

(a)

(b)

(©)

Assumes perfect model

dx

1 n
J©) == llye —hGE).OIF st — = f(t,x6)
k=1

Assumes noiseless measurements
n
1
1©) == 1y = ¥ O3
k=1

Noisy measurements + model error (process noise)
« Optimal combination of (a) and (b)

# measurements

(a) | (b)

Smooths local minima x

(c)
Steep optimization surfaces without plateaus |v | x |V

v

v

Increased confidence with data v x

Enforcing Physics in Bayesian Stochastic Dynamical Systems
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Probabilistic formulation: hidden Markov model
Joint parameter-state estimation with stochastic dynamics
X, €R%*, Y. eR%, 0= (6y,0;, 0 0r) € R%

The process noise term &,
accounts for model error

Xk = LP(Xk_l,uk_l, qu) + fk; fk ~ N(O,Z(@Z)) « Parameter error
* Integration error
Y, = h(Xy, 6y) + ny; N~ N(O, F(@F)) - Insufficient model

expressiveness

6
A 1. ) Parameter Uncertainty
@ Q ' Q @ Model Uncertainty

@ Measurement Uncertainty

V1 Y2
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Posterior flow chart

Log Joint Likelihood

n n
1 1
log L(8; X3, Yp) _EZHYR — h(xy, Hh)||12~(9r) - EZIka — W(xg-1, 9‘{!)”%(02)
k=1 k=1

Deterministic dynamics; |dentity observations:

X = Y(xg-1) Vi = Xk
n n

1 k 2 1 2

log £(6; Yn) o == ¥ [lyic = h(¥¥(x0, 69),604)| log £(6; Yn) o =5 ) 1y = YY1, 6]
k=1 k=2

« ODE-Net; Chen et al.,, 2018 « DMD; Schmid, 2010
 PDE-Net; Long et al., 2018 « SINDy; Brunton et al., 2019
 UDE; Rackauckas et al., 2019 « Hamiltonian NN; Greydanus et al., 2019
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Bayesian Inference

« Goal: compute p(0|Y,,) where Y,, = (¥4, V2, -..) Vn)

o ! . — L(0; Yn)p(0)
Bayes' rule: p(0|Y,,) T

Prior

Posterior

10

| | Data 'O \ /4
i L /i .3../‘ i

Position (rad)

51

-10 . . ‘ -
0 1 2 3 4

0 1 2 3 4
Time (s) Time (s)

« Due to uncertainty in the states, we can only access the joint likelihood: £(0, X,,; Y.,)
* To get the marginal likelihood, we must evaluate the integral
£ Yo) = | £6; X YA
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Sarkka, S. (2013). Bayesian filtering and smoothing (No. 3). Cambridge university press.
fori = 1,..,N \
Propose sample 6

Evaluate posterior: p(8|Y,,) = p(0) [1}=1 £ (6; Ys)
fork =0,....n—1

Marginal Markov Chain Monte Carlo (Sarkka, 2013)

Predict: p(Xi+11Yk, 0) = | pXi411 Xk, O)p Xic| Yy, 0)d X, \

Marginalize: £,110; Yi+1) = f pOWiks11 X141, 0P Xt 1Yk, H)ka+1> el Eler
p(Vie+11Xk+1, O)p(Xk+1|Yk, ) Bayesian Filter

Update: p(Xk+1|yk+1r 0) — p(yk+1|yk' 6)
Accept 6 with Metropolis-Hastings probability; otherwise reject

end for

>MCMC

end for J
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Specialization for Linear Systems
Regularization derived from first principles

 Let the state be distributed normally as X;, ~ NV (my, Py)

» The negative log-likelihood is equivalent to a time-varying weighted least-squares
objective with regularization

LY = | [N O HEOmI©),50
k=1

n
~10g £(60; Yn) ) [1ye = H(O)m (O)]2-15) + 0g 275, (O)]

L=t J | J
| |

Low output error when |5, | small Low output variance

Where P;(0) = A(O)P_(0)AT(6) + 2(0) A dynamics matrix
S, (8) = H(B)P; (O)HT () + T'(8) H observation matrix
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amiltonian Systems

 In mechanical systems, the Hamiltonian 7 is the sum of potential energy U
and kinetic energy T

H(gq,p) =T(q,p) +U(q,p) q generalized position
- Equations of motion are derived from the Hamiltonian p generalized momentum
_oH . _ _9H
1=%, P~ "%

« Hamiltonian systems have a number of physical properties
« Conservation
* Reversibility
« Symplecticness
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Encoding Symplectic Hamiltonian Systems
Ensures the learned _ 1 T
system is Hamiltonian H(4.p.0) = 2P P Ula.6¢)

Differentiation

. . 0U(q,6y)
Conserves Hamiltonian and preserves Leapfrog Method

symplectic structure throughout evaluation

At? dU(q, Oy) ‘
2 dq dk
‘ N aU(q, Oy) ‘ )
dq dk dq dk+1/

qx + Atpy —

Y(qk, pr; Ow) = At (0U(q, Oy)
Pk — 2 (
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Non-Separable Systems Expl |C|t Sym plectlc | ntegrator
M. Tao, “Explicit symplectic approximation of nonseparable Hamiltonians: Algorithm and long time performance,” Physical Review E, vol. 94, no. 4, p.

Introduce fictitious position q and fictitious momentum p and define the augmented Hamiltonian as

_ s _ N 1 _ 1 _
H(q,p,q,p) = H(q,p) + H(q,p) + w(illq —qlli3 +§|Ip — pII%)
\

|
H, H,, H,

Now, q and p are decoupled and an explicit symplectic integrator can be defined as
l,b ¢At/2 lpAt/Z 1/) lpAt/Z lpAt/Z

Where
q q q] [q+AtH,(q,p) q (q + ﬁ) (q —q
_ = =) + R(At =
AL Pl _|P Ath(Q»E) AL, Pl p AL 1P| . 11\p +Pp (48 P-p R(At) = lcos(ZwAt)l sin(2wAt) I
“lap |at Atilﬁ(q’ P) b q R b <q U ﬂ) — R(AD) (q - ﬂ) ~ |=sinQRwAt) I cos(RwAt) I
p p pl |p—AtHz(q p) p p+p P—Pp

Such that a symplectic approximation of the dynamics is

[qT pT ﬁT ﬁT]k+1 = l/JAt([qT pT ﬁT ﬁT]k)
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Symplectic vs. non-symplectic integration during learning

» Methods will sometimes use a non-symplectic integrator during training
« Greydanus, S., Dzamba, M., & Yosinski, J. (2019). Hamiltonian neural networks. Advances in
neural information processing systems, 32.
« Zhong, Y. D., Dey, B., & Chakraborty, A. (2020). Symplectic ODE-Net: Learning Hamiltonian
Dynamics with Control. In International Conference on Learning Representations.
» Other works have shown improved results can be achieved with a symplectic integrator
« Toth, P, Rezende, D. J., Jaegle, A., Racaniere, S., Botev, A., & Higgins, |. (2020). Hamiltonian
Generative Networks. In International Conference on Learning Representations.Z. Chen, J. Zhang,
M. Arjovsky, and L. Bottou,
« Chen, Z., Zhang, J., Arjovsky, M., & Bottou, L. (2020). Symplectic Recurrent Neural Networks.
In International Conference on Learning Representations.

» However, they compare integrators of differing order accuracy

The following results provide:
1. Comparison using symplectic and non-symplectic integrators of comparable order accuracy
2. Quantification of the uncertainty in each of the estimates
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Henon-Heiles - symplectic vs rk integration

The symplectic approach learns a more accurate Hamiltonian

1 1 1
Truth: U(q:1,42) =501 +54; + 4192 =343

Phase plots Hamiltonian over time
) 0.5/
0.13/ 0-4
g
o
ol E 0.125 (A il 0.3
Data. ‘g 0.12] f 0.2
Generation: e = ' /
e 0.115 ,
c n=20 ' 0.1
e At=5 o 0 100 200 0 100 200
+ 0=005 TR .. Time (s) Time (s)
: L Leapfrog Runge-Kutta
S | ; " Leapfrog Runge-Kutta Truth

-0.5
-0.5 0 0.5

q1
(¢) True

-0.5

0 0 0.5

P

q1
(d) Position Data

During testing, leapfrog integrator is used on both models

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Galioto, Gorodetsky, Sharma, and Kramer

Relative mean error:
Leapfrog: 0.7%; Runge-Kutta: 1.3%

ngalioto@umich.edu

The method equipped with RK must learn a smaller
Hamiltonian to compensate for being non-conservative

22
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Henon-Heiles: symplectic approach vyields greater certainty
Posterior estimates of g, trajectory
0.5 , | I I I p
- AV . W N /% p \ ; ;
w-o.giv § ¥ E‘l' J %(V' S5 Vl\f Yl‘/ | ﬁm
60 80 100 140

0 20 40 120 160 180 200

. ‘ & /*’\/Wr\/\ \
= OW N AAAN
-0.5- & \ / ) M
0 20 40 60 30 100 120 140 160 180 200

Time (s)
Leapfrog [ |RK Posterior

Process noise marginal posteriors

e Data [ |LF Posterior

Runge-Kutta Truth

o X 10° | 8000
6000
N | a000! | Symplectic approach learns
a model with an order of
h‘mM 20001 ] | magnitude greater certainty
0 0
0 1 2 0 0.5 1
Process Noise x107* Process Noise x107*
Leapfrog Runge-Kutta
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Nonseparable Hamiltonian: Cherry problem

« System possesses a negative energy mode that causes explosive growth of

. : Goals: Show the Bayesian
arbitrarily small perturbations y

1 algorithm...
H(q1, G2,p1P2) = 5 (a1 +p1) = (g2 +p2) +5P2(pf — 41) — 0102 1. Provides good
Ve = [qx Prl’(1+1u,),  whereu, ~ U[—0.10 0.10] estimates even when

modeling assumptions

« Parametrization: ®(q, p) is vector of Legendre polynomials up to total order 3
(9.p) 9 POl P are not perfectly met

H(x 0) = ®"(x)9, wherex = [q; q2 p1 P]" 2. Generalizes well on
« Data generated from five trajectories with random initial conditions initial conditions
e Training: x¥(0) ~ M (xet(0), 0.0521,) fori=1,...,5 n =21 outside training set
. Testing: x¢t(0) = [0.15 0.10 — 0.05 0.10]7 At = 0.4 3. Outperforms a least-

squares algorithm

« For learning, an explicit symplectic integrator with integration timestep of 0.01 is used
« We compare the Bayesian posterior to the following least squares (LS) fit":
argmin||V®T (x)8 — x||
6

1. Wu, K., Qin, T., & Xiu, D. (2020). Structure-preserving method for reconstructing unknown Hamiltonian systems from trajectory data. SIAM Journal on Scientific
Computing, 42(6), A3704-A3729.
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Bayesian estimate generalizes well outside of training data

Subset of training

Mean 1
0.2 I ..... LS 1
9 P YU
_-F\ A,.l 1_\’:!:{ B %, Truth 1
e 3 - a\ % Data 1
01 _\x.q .‘ &v"‘"}"u"-.' .
LLACY ¥, ‘._‘: B == = Mean?2
—~ \.*’ f ‘?:“' ‘\"’ ss === 182
= O \”@\ ¥4 'o. i\) Truth 2
< '\ £ o A O Daa>
1Y
s ‘ i.. g\{*g#/ "’ = omom Mean 3
> & el .
70.1 o sﬂ“"'&‘u:;&“ P ,* - omoom LS 3
lcﬁ: Eﬁu Truth 3
A Data 3
—0.2
2 4 6 8
Time ¢

IR1:—X1:kllF

Relative error: e(t;,) = TR
1:kIlF
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Testing
: \
04| Posterior 0.2 K
— Mean :" ':‘.
----- LS /= ;o
—_ 0.1 . .
= 0.2 \ Truth 19 20+ 2
= \ N > :f“."\ : /
0 1 ”v' ’0:5 ’0‘ 7 \‘ Y ':
\. o ':J-'/ v NS
_0.2 \ | ."'.0:
0 5 10 15 20
Time ¢

Length of time where e(t) < 10%

Least squares |Mean

t =149

t = 18.22

ngalioto@umich.edu
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Conclusions

« Optimally accounting for different types of uncertainty can lead to robustness even for chaotic systems
* Modeling deterministic systems with stochastic models introduces built-in regularization and

optimization benefits
« Conservation laws can be encoded through integration with appropriate symplectic integrators

Read more

1. Galioto, N., & Gorodetsky, A. A. (2020). Bayesian system ID: optimal management of parameter, model, and
measurement uncertainty. Nonlinear Dynamics, 102(1), 241-267.

2. Galioto, N., & Gorodetsky, A. A. (2020) "Bayesian identification of Hamiltonian dynamics from symplectic data."
2020 59th IEEE Conference on Decision and Control (CDC). IEEE.

3. Sharma, H., Galioto, N., Gorodetsky, A. A., & Kramer, B. (2022). Bayesian Identification of Nonseparable
Hamiltonian Systems Using Stochastic Dynamic Models. arXiv preprint arXiv:2209.07646.
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