

Enforcing physical structure in Bayesian learning of dynamical systems: stability and energy conservation

Nick Galioto, Alex Gorodetsky – University of Michigan Harsh Sharma, Boris Kramer – University of California, San Diego September 26, 2022 SIAM Conference on Mathematics of Data Science

Motivation

- Goal: learn a model of a dynamical system from time-series data
- Two primary design choices in system identification:
 - Model parameterization: neural networks, basis expansions, kernel expansions
 - Objective function: least squares, regularization, etc.
- A good model structure will:
 - Enforce known physics
 - Reduce data requirements and fill in for missing data
- A good objective will:
 - Be robust to sparse and noisy data
 - Handle model inadequacy
 - Generalize well beyond training data

Imperfectly known models

Oftentimes, domain knowledge can produce reliable models, but problemspecific parameters may still be unknown

- Common in fields like structural dynamics and systems biology (material properties, kinetic parameters, etc.)
- Data can be expensive or challenging to collect
- Need to find accurate estimates and quantify uncertainty

Contributions

Present a system ID algorithm that can:

- Structurally embed physics constraints
- Handle measurement, model, and parameter uncertainty and their interaction
- Accurately identify parameters from sparse and noisy data
- Quantify model uncertainty

We seek probabilistic predictions to quantify uncertainty

Probabilistic Prediction

$P(\text{value is } x \mid \text{data, information})$

- Data: time series, noisy and sparse
- Information: conservation of energy (Hamiltonian system)

Outline

- 1. Existing approaches
- 2. Probabilistic formulation
- 3. Algorithm/Marginal likelihood
- 4. Hamiltonian Systems
- 5. Results
- 6. Takeaways

What's wrong with the least squares objective?

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Galioto, Gorodetsky, Sharma, and Kramer

ngalioto@umich.edu

6

One aspect: the least squares error metric can induce an undesirable ranking of dynamical models

The accumulation of small model errors is given equal weight as large model error

How can we design an objective that prioritizes Model 1 over Model 2?

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Existing approaches

Least squares-based objective functions

(a) Assumes perfect model

$$I(\theta) = \frac{1}{n} \sum_{k=1}^{n} ||y_k - h(x(t_k), \theta)||_2^2 \quad \text{s.t.} \quad \frac{dx}{dt} = f(t, x; \theta)$$

(b) Assumes noiseless measurements

$$J(\theta) = \frac{1}{n} \sum_{k=1}^{n} ||y_k - \Psi(y_{k-1}; \theta)||_2^2$$

(c) Noisy measurements + model error (process noise)

• Optimal combination of (a) and (b)

	(a)	(b)	(c)
Steep optimization surfaces without plateaus	\checkmark	×	\checkmark
Smooths local minima	×	\checkmark	\checkmark
Increased confidence with data	\checkmark	×	\checkmark

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Outline

- 1. Existing approaches
- 2. Probabilistic formulation
- 3. Algorithm/Marginal likelihood
- 4. Hamiltonian Systems
- 5. Results
- 6. Takeaways

Probabilistic formulation: hidden Markov model

Joint parameter-state estimation with stochastic dynamics

$$X_k \in \mathbb{R}^{d_x}, \qquad Y_k \in \mathbb{R}^{d_y}, \qquad \theta = (\theta_{\Psi}, \theta_h, \theta_{\Sigma}, \theta_{\Gamma}) \in \mathbb{R}^{d_{\theta}}$$

$$X_{k} = \Psi(X_{k-1}, u_{k-1}, \theta_{\Psi}) + \xi_{k}; \quad \xi_{k} \sim \mathcal{N}(0, \Sigma(\theta_{\Sigma}))$$
$$Y_{k} = h(X_{k}, \theta_{h}) + \eta_{k}; \qquad \eta_{k} \sim \mathcal{N}(0, \Gamma(\theta_{\Gamma}))$$

The process noise term ξ_k accounts for model error

- Parameter error
- Integration error
- Insufficient model
 expressiveness

- L. Parameter Uncertainty
 -) Model Uncertainty
- 3. Measurement Uncertainty

2.

Posterior flow chart

Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural ordinary differential equations. Advances in neural information processing systems, 31.

Long, Z., Lu, Y., Ma, X., & Dong, B. (2018, July). Pde-net: Learning pdes from data. In International Conference on Machine Learning (pp. 3208-3216).

Schmid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of fluid mechanics, 656, 5-2

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. *Proceedings of the national academy of sciences*, 113(15), 3932-3937. Greydanus, S., Dzamba, M., & Yosinski, J. (2019). Hamiltonian neural networks. *Advances in Neural Information Processing Systems*, 32.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., ... & Edelman, A. (2020). Universal differential equations for scientific machine learning. arXiv preprint arXiv:2001.04385.

Outline

- 1. Existing approaches
- 2. Probabilistic formulation

3. Algorithm/Marginal likelihood

- 4. Hamiltonian Systems
- 5. Results
- 6. Takeaways

Bayesian Inference

- Goal: compute $p(\theta|\mathcal{Y}_n)$ where $\mathcal{Y}_n = (y_1, y_2, ..., y_n)$
- Bayes' rule: $p(\theta|\mathcal{Y}_n) = \frac{\mathcal{L}(\theta; \mathcal{Y}_n)p(\theta)}{p(\mathcal{Y}_n)}$

- Due to uncertainty in the states, we can only access the joint likelihood: $\mathcal{L}(\theta, \mathcal{X}_n; \mathcal{Y}_n)$
- To get the marginal likelihood, we must evaluate the integral

$$\mathcal{L}(\theta; \mathcal{Y}_n) = \int \mathcal{L}(\theta; \mathcal{X}_n, \mathcal{Y}_n) d\mathcal{X}_n$$

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Marginal Markov Chain Monte Carlo (Särkkä, 2013)

Särkkä, S. (2013). *Bayesian filtering and smoothing* (No. 3). Cambridge university press.

- 1. **for** i = 1, ..., N
- 2. Propose sample θ

Evaluate posterior: $p(\theta|\mathcal{Y}_n) = p(\theta) \prod_{k=1}^n \mathcal{L}_k(\theta; \mathcal{Y}_k)$

3. **for**
$$k = 0, ..., n - 1$$

- 4. Predict: $p(X_{k+1}|\mathcal{Y}_k,\theta) = \int p(X_{k+1}|X_k,\theta)p(X_k|\mathcal{Y}_k,\theta)dX_k$
- 5. Marginalize: $\mathcal{L}_{k+1}(\theta; \mathcal{Y}_{k+1}) = \int p(y_{k+1}|X_{k+1}, \theta) p(X_{k+1}|\mathcal{Y}_k, \theta) dX_{k+1}$ Kalman Filter /

6. Update:
$$p(X_{k+1}|\mathcal{Y}_{k+1},\theta) = \frac{p(y_{k+1}|X_{k+1},\theta)p(X_{k+1}|\mathcal{Y}_{k},\theta)}{p(y_{k+1}|\mathcal{Y}_{k},\theta)}$$

7. end for

- 8. Accept θ with Metropolis-Hastings probability; otherwise reject
- 9. end for

Bayesian Filter

MCMC

Specialization for Linear Systems Regularization derived from first principles

- Let the state be distributed normally as $X_k \sim \mathcal{N}(m_k, P_k)$
- The negative log-likelihood is equivalent to a time-varying weighted least-squares objective with regularization

$$\mathcal{L}(\theta; \mathcal{Y}_n) = \prod_{k=1}^n \mathcal{N}(y_k; \ H(\theta)m_k^-(\theta), S_k)$$

$$-\log \mathcal{L}(\theta; \mathcal{Y}_n) \propto \sum_{k=1}^n \|y_k - H(\theta)m_k^-(\theta)\|_{S_k^{-1}(\theta)}^2 + \log|2\pi S_k(\theta)|$$

Low output error when $|S_k|$ small Low output variance

Where

$$P_{k}^{-}(\theta) = A(\theta)P_{k-1}^{+}(\theta)A^{T}(\theta) + \Sigma(\theta)$$

$$S_{k}(\theta) = H(\theta)P_{k}^{-}(\theta)H^{T}(\theta) + \Gamma(\theta)$$

A dynamics matrix H observation matrix

e

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Outline

- 1. Existing approaches
- 2. Probabilistic formulation
- 3. Algorithm/Marginal likelihood

4. Hamiltonian Systems

- 5. Results
- 6. Takeaways

Hamiltonian Systems

• In mechanical systems, the Hamiltonian \mathcal{H} is the sum of potential energy U and kinetic energy T

$$\mathcal{H}(q,p) = T(q,p) + U(q,p)$$

• Equations of motion are derived from the Hamiltonian

$$\dot{q} = \frac{\partial \mathcal{H}}{\partial p} \quad \dot{p} = -\frac{\partial \mathcal{H}}{\partial q}$$

- Hamiltonian systems have a number of physical properties
 - Conservation
 - Reversibility
 - Symplecticness

q generalized position *p* generalized momentum

Encoding Symplectic Hamiltonian Systems

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Non-Separable Systems: Explicit Symplectic Integrator

M. Tao, "Explicit symplectic approximation of nonseparable Hamiltonians: Algorithm and long time performance," Physical Review E, vol. 94, no. 4, p. 043303, 2016.

Introduce fictitious position \widetilde{q} and fictitious momentum \widetilde{p} and define the augmented Hamiltonian as

$$\bar{H}(\mathbf{q}, \mathbf{p}, \tilde{\mathbf{q}}, \tilde{\mathbf{p}}) = H(\mathbf{q}, \tilde{\mathbf{p}}) + H(\tilde{\mathbf{q}}, \mathbf{p}) + \omega \left(\frac{1}{2} \|\mathbf{q} - \tilde{\mathbf{q}}\|_{2}^{2} + \frac{1}{2} \|\mathbf{p} - \tilde{\mathbf{p}}\|_{2}^{2}\right)$$
$$H_{a} \qquad H_{b} \qquad H_{c}$$

Now, q and p are decoupled and an explicit symplectic integrator can be defined as

$$\psi^{\Delta t} \coloneqq \psi_{H_a}^{\Delta t/2} \circ \psi_{H_b}^{\Delta t/2} \circ \psi_{H_c}^{\Delta t} \circ \psi_{H_b}^{\Delta t/2} \circ \psi_{H_a}^{\Delta t/2}$$

Where

$$\psi_{H_{a}}^{\Delta t} : \begin{bmatrix} \mathbf{q} \\ \mathbf{p} \\ \mathbf{\tilde{p}} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{q} \\ p - \Delta t H_{q}(\mathbf{q}, \mathbf{\tilde{p}}) \\ \mathbf{\tilde{p}} \end{bmatrix}; \ \psi_{H_{b}}^{\Delta t} : \begin{bmatrix} \mathbf{q} \\ \mathbf{p} \\ \mathbf{\tilde{q}} \\ \mathbf{\tilde{p}} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{q} + \Delta t H_{p}(\mathbf{\tilde{q}}, \mathbf{p}) \\ \mathbf{p} \\ \mathbf{\tilde{q}} \\ \mathbf{\tilde{p}} \end{bmatrix}; \ \psi_{\omega H_{c}}^{\Delta t} : \begin{bmatrix} \mathbf{q} \\ \mathbf{p} \\ \mathbf{\tilde{p}} \\ \mathbf{\tilde{p}} \end{bmatrix} \rightarrow \frac{1}{2} \begin{bmatrix} (\mathbf{q} + \mathbf{\tilde{q}}) \\ \mathbf{p} + \mathbf{\tilde{p}} \end{pmatrix} + \mathbf{R}(\Delta t) \begin{pmatrix} \mathbf{q} - \mathbf{\tilde{q}} \\ \mathbf{p} - \mathbf{\tilde{p}} \end{pmatrix} \\ \mathbf{R}(\Delta t) = \begin{bmatrix} \cos(2\omega\Delta t) \mathbf{I} & \sin(2\omega\Delta t) \mathbf{I} \\ -\sin(2\omega\Delta t) \mathbf{I} & \cos(2\omega\Delta t) \mathbf{I} \end{bmatrix}$$

Such that a symplectic approximation of the dynamics is

$$[\mathbf{q}^T \ \mathbf{p}^T \ \widetilde{\mathbf{q}}^T \ \widetilde{\mathbf{p}}^T]_{k+1} = \psi^{\Delta t} ([\mathbf{q}^T \ \mathbf{p}^T \ \widetilde{\mathbf{q}}^T \ \widetilde{\mathbf{p}}^T]_k)$$

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Outline

- 1. Existing approaches
- 2. Probabilistic formulation
- 3. Algorithm/Marginal likelihood
- 4. Hamiltonian Systems
- 5. Results
- 6. Takeaways

Symplectic vs. non-symplectic integration during learning

- Methods will sometimes use a non-symplectic integrator during training
 - Greydanus, S., Dzamba, M., & Yosinski, J. (2019). Hamiltonian neural networks. Advances in neural information processing systems, 32.
 - Zhong, Y. D., Dey, B., & Chakraborty, A. (2020). Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control. In *International Conference on Learning Representations*.
- Other works have shown improved results can be achieved with a symplectic integrator
 - Toth, P., Rezende, D. J., Jaegle, A., Racanière, S., Botev, A., & Higgins, I. (2020). Hamiltonian Generative Networks. In *International Conference on Learning Representations*.Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou,
 - Chen, Z., Zhang, J., Arjovsky, M., & Bottou, L. (2020). Symplectic Recurrent Neural Networks. In International Conference on Learning Representations.
- However, they compare integrators of differing order accuracy

The following results provide:

- 1. Comparison using symplectic and non-symplectic integrators of comparable order accuracy
- 2. Quantification of the uncertainty in each of the estimates

Hénon-Heiles - symplectic vs rk integration

The symplectic approach learns a more accurate Hamiltonian

Truth:
$$U(q_1, q_2) = \frac{1}{2}q_1^2 + \frac{1}{2}q_2^2 + q_1^2q_2 - \frac{1}{3}q_2^2$$

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Galioto, Gorodetsky, Sharma, and Kramer

Hamiltonian over time

The method equipped with RK must learn a smaller Hamiltonian to compensate for being non-conservative

> **Relative mean error:** Leapfrog: 0.7%; Runge-Kutta: 1.3%

Hénon-Heiles: symplectic approach yields greater certainty

Enforcing Physics in Bayesian Stochastic Dynamical Systems

ngalioto@umich.edu

Nonseparable Hamiltonian: Cherry problem

• System possesses a negative energy mode that causes explosive growth of arbitrarily small perturbations

$$H(q_1, q_2, p_1, p_2) = \frac{1}{2}(q_1^2 + p_1^2) - (q_2^2 + p_2^2) + \frac{1}{2}p_2(p_1^2 - q_1^2) - q_1q_2p_1$$

$$\mathbf{y}_k = [\mathbf{q}_k \ \mathbf{p}_k]^T (1 + u_k), \quad \text{where } u_k \sim \mathcal{U}[-0.10 \ 0.10]$$

- Parametrization: $\Phi(\mathbf{q}, \mathbf{p})$ is vector of Legendre polynomials up to total order 3 $\widetilde{H}(\mathbf{x}, \theta) = \Phi^T(\mathbf{x})\theta$, where $\mathbf{x} = [q_1 q_2 p_1 p_2]^T$
- Data generated from five trajectories with random initial conditions
- Training: $\mathbf{x}^{(i)}(0) \sim \mathcal{N}(\mathbf{x}^{test}(0), \ 0.05^2 I_4)$ for i = 1, ..., 5 n = 21
- Testing: $\mathbf{x}^{test}(0) = [0.15 \ 0.10 \ -0.05 \ 0.10]^T$ $\Delta t = 0.4$
- For learning, an explicit symplectic integrator with integration timestep of 0.01 is used
- We compare the Bayesian posterior to the following least squares (LS) fit¹:

$$\underset{\theta}{\operatorname{argmin}} \| \nabla \Phi^T(\mathbf{x}) \theta - \dot{\mathbf{x}} \|$$

1. Wu, K., Qin, T., & Xiu, D. (2020). Structure-preserving method for reconstructing unknown Hamiltonian systems from trajectory data. SIAM Journal on Scientific Computing, 42(6), A3704-A3729.

Enforcing Physics in Bayesian Stochastic Dynamical Systems

Galioto, Gorodetsky, Sharma, and Kramer

ngalioto@umich.edu

24

Goals: Show the Bayesian algorithm...

- Provides good estimates even when modeling assumptions are not perfectly met
- Generalizes well on initial conditions outside training set
- 3. Outperforms a leastsquares algorithm

Bayesian estimate generalizes well outside of training data

Subset of training

Relative error:
$$e(t_k) = \frac{\|\hat{\mathbf{x}}_{1:k} - \mathbf{x}_{1:k}\|_F}{\|\mathbf{x}_{1:k}\|_F}$$

Testing

Length of time where e(t) < 10%

Least squares	Mean
t = 1.49	t = 18.22

Conclusions

- Optimally accounting for different types of uncertainty can lead to robustness even for chaotic systems
- Modeling deterministic systems with stochastic models introduces built-in regularization and optimization benefits
- Conservation laws can be encoded through integration with appropriate symplectic integrators

Read more

- 1. Galioto, N., & Gorodetsky, A. A. (2020). Bayesian system ID: optimal management of parameter, model, and measurement uncertainty. *Nonlinear Dynamics*, *102*(1), 241-267.
- 2. Galioto, N., & Gorodetsky, A. A. (2020) "Bayesian identification of Hamiltonian dynamics from symplectic data." 2020 59th IEEE Conference on Decision and Control (CDC). IEEE.
- 3. Sharma, H., Galioto, N., Gorodetsky, A. A., & Kramer, B. (2022). Bayesian Identification of Nonseparable Hamiltonian Systems Using Stochastic Dynamic Models. *arXiv preprint arXiv:2209.07646*.

Funding

AFOSR Program in Computational Mathematics