

Accounting for Model Errors in Probabilistic Linear Identification of Nonlinear PDE Systems

Nicholas Galioto (ngalioto@umich.edu) and Alex Arkady Gorodetsky Department of Aerospace Engineering, University of Michigan – Ann Arbor 16th United States National Congress on Computational Mechanics July 27, 2021

Motivation

Objective: learn a model of a dynamical system from data

Two primary design choices in system identification:

- Model structure
 - Neural networks
 - Universal approximators
- Objective function
 - Least squared error
 - Regularization
- A good algorithm will:
- Handle sparse and noisy data
- Scale well with dimension
- Trade off bias and variance optimally

ngalioto@umich.edu

Ljung, L. (1999). System identification. *Wiley encyclopedia of electrical and electronics engineering*, 1-19. Schoukens, J., & Ljung, L. (2019). Nonlinear system identification: A user-oriented road map. *IEEE Control Systems Magazine*, *39*(6), 28-99.

Motivation

- Linear approximations are commonly used to reduce the computational burden of evaluating a model
 - Estimation of high-dimensional models can be intractable
 - Real-time prediction/control requires inexpensive models
- Estimating a model that does not match the underlying system introduces uncertainty into the problem
- Common methods struggle when this model uncertainty is accompanied with measurement noise
- Good estimation requires proper management of (1) model,
 (2) measurement, and (3) parameter uncertainty

ngalioto@umich.edu

Outline

- 1. Existing approaches
- 2. Probabilistic formulation
- 3. Bayesian inference
- 4. Algorithm/Marginal likelihood
- 5. Results
- 6. Takeaways

Existing Approaches

Least squares-based objective functions

(a) Assumes perfect model

$$J(\theta) = \sum_{k=1}^{n} \|y_k - h(x(t_k), \theta)\|_2^2 \quad \text{s.t.} \quad \frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x; \theta)$$

(b) Assumes noiseless measurements $J(\theta) = \sum_{k=1}^{n} \|y_k - \Psi(y_{k-1}; \theta)\|_2^2$

(c) Noisy measurements + model error (process noise) 🛸

Optimal combination of (a) and (b)

	(a)	(b)	(c)
Steep optimization surfaces without plateaus	\checkmark	×	\checkmark
Suppresses local minima	×	\checkmark	\checkmark
Increased confidence with data	\checkmark	×	\checkmark

measurements

Probabilistic Formulation (Linear) Joint parameter-state estimation with stochastic dynamics $X_k \in \mathbb{R}^{d_x}, \qquad Y_k \in \mathbb{R}^{d_y}, \qquad \theta = (\theta_{\Psi}, \theta_h, \theta_{\Sigma}, \theta_{\Gamma}) \in \mathbb{R}^{d_{\theta}}$ The process noise term ξ_k $X_{k} = A(\theta_{\Psi})X_{k-1} + B(\theta_{\Psi})u_{k-1} + \xi_{k}; \quad \xi_{k} \sim \mathcal{N}(0, \Sigma(\theta_{\Sigma})) \quad \text{accounts for model error}$ $\eta_k \sim \mathcal{N}(0, \Gamma(\theta_{\Gamma}))$ • Parameter error • Integration error $Y_k = H(\theta_{\Psi})X_k + \eta_k;$ Insufficient model expressiveness θ **Parameter Uncertainty** x_0 x_1 x_2 Model Uncertainty 2.) Measurement Uncertainty 3.) y_1 y_2

Posterior Flow Chart

Ayed, I., de Bézenac, E., Pajot, A., Brajard, J., & Gallinari, P. (2019). Learning dynamical systems from partial observations. arXiv preprint arXiv:1902.11136.
Long, Z., Lu, Y., Ma, X., & Dong, B. (2018, July). Pde-net: Learning pdes from data. In *International Conference on Machine Learning* (pp. 3208-3216).
Zhong, Y. D., Dey, B., & Chakraborty, A. (2019). Symplectic ode-net: Learning hamiltonian dynamics with control. arXiv preprint arXiv:1909.12077.
Hills, D. J., Grütter, A. M., & Hudson, J. J. (2015). An algorithm for discovering Lagrangians automatically from data. *PeerJ Computer Science*, 1, e31.
Qin, T., Wu, K., & Xiu, D. (2019). Data driven governing equations approximation using deep neural networks. *Journal of Computational Physics*, 395, 620-635.
Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. *The Journal of Machine Learning Research*, 19(1), 932

Bayesian Inference

- Goal: compute $p(\theta|\mathcal{Y}_n)$ where $\mathcal{Y}_n = (y_1, y_2, ..., y_n)$
- Bayes' rule: $p(\theta|\mathcal{Y}_n) = \frac{\mathcal{L}(\theta; \mathcal{Y}_n)p(\theta)}{p(\mathcal{Y}_n)}$

- Due to uncertainty in the states, we can only access the joint likelihood: $\mathcal{L}(\theta; X_n, \mathcal{Y}_n)$
- To get the marginal likelihood, we must evaluate the integral

$$\mathcal{L}(\theta; \mathcal{Y}_n) = \int \mathcal{L}(\theta; \mathcal{X}_n, \mathcal{Y}_n) d\mathcal{X}_n$$

Marginal Markov Chain Monte Carlo (MCMC) Algorithm (Särkkä, 2013)

Marginal Likelihood

Regularization derived from first principles

Let the state be distributed normally as $X_k \sim \mathcal{N}(m_k, P_k)$

The negative log-likelihood is equivalent to a time-varying generalized least-squares objective with regularization

$$\mathcal{L}(\theta; \mathcal{Y}_n) \propto \sum_{k=1}^{\infty} \|y_k - H(\theta)m_k^-(\theta)\|_{S_k^{-1}(\theta)}^2 + \log|2\pi S_k(\theta)|$$

Where

$$P_k^{-}(\theta) = A(\theta)P_{k-1}^{+}(\theta)A^{T}(\theta) + Q(\theta)$$

$$S_k(\theta) = H(\theta)P_k^{-}(\theta)H^{T}(\theta) + R(\theta)$$

This objective prioritizes:

- low bias: $||y_k H(\theta)m_k^-(\theta)||_{S_k^{-1}(\theta)}^2$
- low variance: $\log |2\pi S_k(\theta)|$

Duffing Oscillator with Forcing Our method resists over-fitting

$$\begin{bmatrix} \dot{x} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \alpha & \delta \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \beta \begin{bmatrix} 0 \\ x^3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \gamma \cos(\omega t), \qquad y_k = \begin{bmatrix} x_k \\ \dot{x}_k \end{bmatrix}$$

$$\alpha = 1, \delta = -0.3, \beta = -1, \gamma = 0.5, \omega = 1.2$$

Chaotic solution¹

We estimate $A(\theta)$, $B(\theta)$, $H(\theta)$, and $x_0(\theta)$ with dimension $d_x = 6$

ngalioto@umich.edu

1. Jordan, D., Smith, P., & Smith, P. (2007). *Nonlinear ordinary differential equations: an introduction for scientists and engineers* (Vol. 10). Oxford University Press on Demand.

1.5

0.5

 \dot{x}

-Truth

High-Dimensional Systems

Main idea: project data onto low-dimensional subspace with SVD

1. Collect all data into one matrix Y

$$\mathbf{Y} = \begin{bmatrix} y_1 \ y_2 & \dots & y_N \end{bmatrix} \in \mathbb{R}^{\mathbf{d}_y \times N}$$

2. Take the SVD

$$\mathbf{Y} = U \boldsymbol{\Sigma} V^T$$

- 3. Truncate the SVD to rank $r \ll d_y$, and let the transformed data Y_r be defined as $Y_r = \Sigma_r V_r^T \in \mathbb{R}^{r \times N}$
- 4. Perform inference as usual with the transformed data
- 5. Map predictions back to high-dimensional space

$$\hat{y} = U_r \hat{y}_r$$

ди

Data provided by: ngalioto@umich.edu 2. Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. The Journal of Machine Learning Research, 19(1), 932-955. 14

Main Takeaways

- Optimally accounting for different types of uncertainty can lead to robustness even when data are few and/or noisy
- Modeling deterministic systems with stochastic models introduces built-in regularization and optimization benefits

Related Works

- 1. Galioto, N., & Gorodetsky, A. A. (2020). Bayesian system ID: optimal management of parameter, model, and measurement uncertainty. *Nonlinear Dynamics*, *102*(1), 241-267.
- Galioto, N., & Gorodetsky, A. A. (2021, May). A New Objective for Identification of Partially Observed Linear Time-Invariant Dynamical Systems from Input-Output Data. In *Learning for Dynamics and Control* (pp. 1180-1191). PMLR.

Funding

- DARPA Physics of AI Program
 - "Physics Inspired Learning and Learning the Order and Structure of Physics."
- AFOSR Program in Computational Mathematics

