

Enforcing Physical Phenomena in System Identification using Bayesian Inference and Stochastic Models

Nicholas Galioto (ngalioto@umich.edu) and Alex Arkady Gorodetsky Department of Aerospace Engineering, University of Michigan – Ann Arbor Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering, and Technology 2021 September 29, 2021

Outline

- Motivation
- Existing approaches
- Methodology
 - Problem formulation
 - Bayesian inference
- Results
 - Henon-Heiles
 - Reaction-diffusion PDE
- Conclusions

Motivation

Objective: learn a model of a dynamical system from data Two primary design choices in system identification:

- Model structure
 - Neural networks
 - Universal approximators
- Objective function
 - Least squared error
 - Regularization
- A good algorithm will:
- Handle sparse and noisy data
- Scale well with dimension
- Trade off bias and variance optimally

Motivation

- Incorporate all available information into our learning setup
 - Data collected from the system
 - Knowledge from physics
- We have a breadth of knowledge on physical systems from physics
 - Conservation of energy
 - Principle of least action
 - Stability
- In this work, we seek to enforce physical phenomena to learn Hamiltonian systems
 - Conservation $\mathcal{H}(q,p) = T(q,p) + U(q,p)$
 - Reversibility
 - Symplecticness

 $\partial \mathcal{H}$

дą

Existing Approaches

Least squares-based objective functions (a) Assumes perfect model $J(\theta) = \sum_{k=1}^{n} ||y_k - h(x(t_k), \theta)||_2^2 \quad \text{s.t.} \quad \frac{dx}{dt} = f(t, x; \theta)$ (b) Assumes noiseless measurements $J(\theta) = \sum_{k=1}^{n} ||y_k - \Psi(y_{k-1}; \theta)||_2^2$

(c) Noisy measurements + model error (process noise)

• Optimal combination of (a) and (b)

	(a)	(b)	(c)
Steep optimization surfaces without plateaus	\checkmark	×	\checkmark
Suppresses local minima	×	\checkmark	\checkmark
Increased confidence with data	\checkmark	×	\checkmark

measurements

Existing Approaches

- Hamiltonian neural network (HNN) (Greydanus et al., 2019)
 - Parameterize the Hamiltonian
 - Minimize the objective

$$J(\theta) = \sum_{i=1}^{n} \left\| q_i - \int_{t_{i-1}}^{t_i} \frac{\partial \mathcal{H}_{\theta}}{\partial q} dt - q_{i-1} \right\|^2 + \left\| p_i + \int_{t_{i-1}}^{t_i} \frac{\partial \mathcal{H}_{\theta}}{\partial p} dt - p_{i-1} \right\|^2$$

- Originally forward Euler integration was used
- Leapfrog integration compared to forward Euler (Toth et al., 2019; Chen et al., 2019)
 - Leapfrog conserves the Hamiltonian
 - Leapfrog 2nd order accurate; forward Euler only 1st order accurate

S. Greydanus, M. Dzamba, and J. Yosinski, "Hamiltonian neural networks," in Advances in Neural Information Processing Systems, 2019, pp. 15 353–15 363.

P. Toth, D. J. Rezende, A. Jaegle, S. Racaniere, A. Botev, `and I. Higgins, "Hamiltonian generative networks," arXiv preprint arXiv:1909.13789, 2019.

Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou, "Symplectic recurrent neural networks," arXiv preprint arXiv:1909.13334, 2019.

N. Galioto and A. A. Gorodetsky, "Bayesian system id: optimal management of parameter, model, and measurement uncertainty," Nonlinear Dynamics, vol 102, no 1, pp. 241-267, 2020. ngalioto@umich.edu

Probabilistic Formulation

Joint parameter-state estimation with stochastic dynamics

Posterior Flow Chart

Ayed, I., de Bézenac, E., Pajot, A., Brajard, J., & Gallinari, P. (2019). Learning dynamical systems from partial observations. *arXiv preprint arXiv:1902.11136*.
Long, Z., Lu, Y., Ma, X., & Dong, B. (2018, July). Pde-net: Learning pdes from data. In *International Conference on Machine Learning* (pp. 3208-3216).
Zhong, Y. D., Dey, B., & Chakraborty, A. (2019). Symplectic ode-net: Learning hamiltonian dynamics with control. *arXiv preprint arXiv:1909.12077*.
Hills, D. J., Grütter, A. M., & Hudson, J. J. (2015). An algorithm for discovering Lagrangians automatically from data. *PeerJ Computer Science*, *1*, e31.
Qin, T., Wu, K., & Xiu, D. (2019). Data driven governing equations approximation using deep neural networks. *Journal of Computational Physics*, *395*, 620-635.
Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. *The Journal of Machine Learning Research*, *19*(1), 932-955.

ngalioto@umich.edu

UNIVERSITY OF MICHIGAN

Bayesian Inference

- Goal: compute $p(\theta|\mathcal{Y}_n)$ where $\mathcal{Y}_n = (y_1, y_2, ..., y_n)$
- Bayes' rule: $p(\theta|\mathcal{Y}_n) = \frac{\mathcal{L}(\theta; \mathcal{Y}_n)p(\theta)}{p(\mathcal{Y}_n)}$

- Due to uncertainty in the states, we can only access the joint likelihood: $\mathcal{L}(\theta; X_n, \mathcal{Y}_n)$
- To get the marginal likelihood, we must evaluate the integral

$$\mathcal{L}(\theta; \mathcal{Y}_n) = \int \mathcal{L}(\theta; \mathcal{X}_n, \mathcal{Y}_n) d\mathcal{X}_n$$

Approximate Marginal Posterior (Särkkä, 2013)

5. end for

S. Särkkä, Bayesian Filtering and Smoothing, ser. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2013

UNIVERSITY OF MICHIGAN

Dynamical Model Parameterization

Ensures the learned system is Hamiltonian

$$\mathcal{H}(q, p, \theta_{\Psi}) = \frac{1}{2}p^{T}p + U(q, \theta_{\Psi})$$

Differentiation
 $\dot{q} = p, \qquad \dot{p} = -\frac{\partial U(q, \theta_{\Psi})}{\partial q}$
nd preserves
hout evaluation
Leapfrog Method

Conserves Hamiltonian and preserves symplectic structure throughout evaluation

$$\Psi(q_k, p_k; \theta_{\Psi}) = \begin{bmatrix} q_k + \Delta t p_k - \frac{\Delta t^2}{2} \frac{\partial U(q, \theta_{\Psi})}{\partial q} \Big|_{q_k} \\ p_k - \frac{\Delta t}{2} \left(\frac{\partial U(q, \theta_{\Psi})}{\partial q} \Big|_{q_k} + \frac{\partial U(q, \theta_{\Psi})}{\partial q} \Big|_{q_{k+1}} \right) \end{bmatrix}$$

Results: Hénon-Heiles

The symplectic approach learns a more accurate Hamiltonian $Truth: U(q_1, q_2) = \frac{1}{2}q$

Phase plots 0.50.5 q_2 0 -0.5-0.50.5-0.50.5-0.50 (a) Leapfrog (b) Runge-Kutta 0.50.5 q_2 0 -0.5-0.5-0.50.5-0.50.50 0 q_1 (c) True (d) Position Data **Data Generation:** $n = 20, \quad \Delta t = 5, \quad \sigma = 0.05$

Hamiltonian over time

The method equipped with RK must learn a smaller Hamiltonian to compensate for being non-conservative

> **Relative mean error:** Leapfrog: 0.7% Runge-Kutta: 1.3%

Results: Hénon-Heiles

The symplectic approach yields greater certainty

Results: Hénon-Heiles

MAP estimate outperforms least squares approaches

Results: Reaction-Diffusion PDE

$$\frac{\partial C_1}{\partial t} = \theta_1 \frac{\partial^2 C_1}{\partial x^2} + 0.1 - C_1 + \theta_3 C_1^2 C_2$$
$$\frac{\partial C_2}{\partial t} = \theta_2 \frac{\partial^2 C_2}{\partial x^2} C_2 + 0.9 - C_1^2 C_2$$

Neumann Boundary Conditions

$$\frac{\partial C_1}{\partial x} = \frac{\partial C_2}{\partial x} = 0$$

$$(C_i)_j \sim \mathcal{U}(0.4, 0.6) \text{ for } t = 0; i = 1, 2; j = 1, 2, ..., 201.$$

UNIVERSITY OF MICHIGAN

Main Takeaway

- Optimally accounting for different types of uncertainty can lead to robustness even when data are few and/or noisy¹
- Embedding the learning process with a symplectic integrator yields two main benefits²
 - Greater accuracy
 - Greater certainty

Funding

- DARPA Physics of AI Program
 - "Physics Inspired Learning and Learning the Order and Structure of Physics."
- AFOSR Program in Computational Mathematics

1. Galioto, N., & Gorodetsky, A. A. (2020). Bayesian system ID: optimal management of parameter, model, and measurement uncertainty. *Nonlinear Dynamics*, *102*(1), 241-267.

2. Galioto, N., & Gorodetsky, A. A. (2020, December). Bayesian Identification of Hamiltonian Dynamics from Symplectic Data. In 2020 59th IEEE Conference on Decision and Control (CDC) (pp. 1190-1195). IEEE.

Thank You

Marginal Likelihood

Regularization derived from first principles

Let the state be distributed normally as $X_k \sim \mathcal{N}(m_k, P_k)$

The negative log-likelihood is equivalent to a time-varying generalized least-squares objective with regularization

$$\mathcal{L}(\theta; \mathcal{Y}_n) \propto \sum_{k=1}^{\infty} \|y_k - H(\theta)m_k^-(\theta)\|_{S_k^{-1}(\theta)}^2 + \log|2\pi S_k(\theta)|$$

Where

$$P_{k}^{-}(\theta) = A(\theta)P_{k-1}^{+}(\theta)A^{T}(\theta) + Q(\theta)$$

$$S_{k}(\theta) = H(\theta)P_{k}^{-}(\theta)H^{T}(\theta) + R(\theta)$$

This objective prioritizes:

- low bias: $||y_k H(\theta)m_k^-(\theta)||_{S_k^{-1}(\theta)}^2$
- low variance: $\log |2\pi S_k(\theta)|$

Lazzús, J. A., Rivera, M., & López-Caraballo, C. H. (2016). Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm. *Physics Letters A*, 380(11-12), 1164-1171.
 Xu, S., Wang, Y., & Liu, X. (2018). Parameter estimation for chaotic systems via a hybrid flower pollination algorithm. *Neural Computing and Applications*, 30(8), 2607-2623.
 Zhuang, L., Cao, L., Wu, Y., Zhong, Y., Zhangzhong, L., Zheng, W., & Wang, L. (2020). Parameter Estimation of Lorenz Chaotic System Based on a Hybrid Jaya-Powell Algorithm. *IEEE Access*, 8, 2/ngalioto@umich.edu

Numerical Experiments: FPU Chain The symplectic approach learns a more accurate Hamiltonian

$$U(q) = \sum_{i=1}^{N} \frac{(q_{i+1} - q_i)^2}{2} + \frac{\beta(q_{i+1} - q_i)^4}{4}$$

- We choose N = 2, $\beta = 0.1$
- Parameterize $U(q, \theta_{\Psi})$ with polynomials up to total order 4 (14 terms)

Numerical Experiments: FPU Chain The symplectic approach yields greater certainty Posterior estimates of q_1 trajectory q_1 2030 405060 7010 q_1 30 10 205060 700 40 Time (s) LF Posterior - Leapfrog RK Posterior – -Runge-Kutta – – Data Truth Process noise marginal posteriors 8000 9000 6000 4000 6000 3000 6000 4000 4000 20003000 2000 2000 1000 0 0.02 0.04100 50.050.1510150 0 σ_q^2 $imes 10^{-3}$ σ_p^2 $imes 10^{-3}$ σ_a^2 σ_n^2 Leapfrog **Runge-Kutta**

0.5 \dot{x} -0.5 **Duffing Oscillator with Forcing** -1 -1.5 $\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \alpha & \delta \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \beta \begin{bmatrix} 0 \\ x^3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \gamma \cos(\omega t),$ $y_k = x_k$ $T = 400, \Delta t = 0.25, \ \sigma_{\Gamma} = 10^{-8}$ $\alpha = 1, \delta = -0.3, \beta = -1, \gamma = 0.65, \omega = 1.2$ Sample LS (Det.) • Data ---- Truth Sample LS (Det.) - Truth Period-2 solution¹ 2 $y_1(t + \Delta t)$ 1 0 1 Model formulation: $x_0 = x_0(\theta), \ d_x = 2$ $\xi_k \sim \mathcal{N}\big(0, \Sigma(\theta)\big)$ $x_{k+1} = f(x_k, u_k; \theta) + \xi_k,$ -2 $\eta_k \sim \mathcal{N}(0,\Gamma)$ $y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} x_k + \eta_k,$ 0 50100150200-3 -20 -1 Time (s) $y_1(t)$ **Priors:** Neural network architecture² $\theta_{\Psi} \sim \mathcal{N}(0,5)$ $f(x, u; \theta) = A_1(\theta) \tanh\left(A_2(\theta) \begin{bmatrix} x \\ y \end{bmatrix} + b_2(\theta)\right) + A_3(\theta) \begin{bmatrix} x \\ y \end{bmatrix} + b_3(\theta)$ $\theta_{\Sigma} \sim \text{half-}\mathcal{N}(0, 10^{-5})$

-Truth

1. Jordan, D., & Smith, P. (2007). Nonlinear ordinary differential equations: an introduction for scientists and engineers (Vol. 10). Oxford University Press on Demand.

2. Beintema, G., Toth, R., & Schoukens, M. (2021, May). Nonlinear state-space identification using deep encoder networks. In Learning for Dynamics and Control (pp. 241-250). PMLR.

Duffing Oscillator with Forcing

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \alpha & \delta \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} + \beta \begin{bmatrix} 0 \\ x^3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \gamma \cos(\omega t), \qquad y_k = x_k$$

$$\label{eq:alpha} \begin{split} \alpha &= 1, \, \delta = -0.3, \, \beta = -1, \, \gamma = 0.5, \, \omega = 1.2 \\ \mbox{Chaotic solution}^1 \end{split}$$

