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Motivation

Many existing objective functions for system identification face the following challenges:
e They do not consider the existence and/or interaction of the three primary sources of
uncertainty: (1) parameter, (2) model, and (3) measurement |GG20]

e As a result, they struggle to find good estimates when the data are noisy and/or sparse
The challenges and benefits of neglecting and including all three sources of uncertainty in
the objective function are shown below
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The table below displays key observations.

(b)

Steep optimization surfaces without plateaus
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Suppresses local minima X
Increased confidence with data v X

Our contributions include:

e A new objective function for system ID that differs from existing Bayesian approaches
by using a stochastic dynamics to account for model error

e kmpirical evidence that our method yields greater accuracy and precision compared to
a least squares-based method, even when paired with the more robust ERA |JP85]
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Probabilistic Formulation and Resulting Objective

We consider linear time-invariant models and assume the uncertainty is additive Gaussian
X1 = AXy + Buy + &, & ~ N(0,3),

2
Y = CXy + i, me ~ N(0,T), 2
The interaction of the uncertainty can be visualized through the Bayesian network
/ 9 y 1. Measurement uncertainty

T @ Model uncertainty

3. Measurement uncertainty

Goal: Evaluate the posterior distribution p(© | ),)
L(0;Y,)p(O)

Bayes’ rule: p(© | V) = where £(0;Y,) = p(V, | ©)

p(On)
In order to obtain the marginal likelihood £(©;)),), we must marginalize out the states
£(6:Y,) = / £(6. X, | Y,)dX,. (3)

We use the MAP optimization objective to obtain our model estimate
OMAF — arg maxlog £(0; V,) + log p(8).
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Least Squares Estimation of Markov Parameters + ERA

Given system (2), the input-output equation is written as

k k
Vi = CAk$‘0 + Z CAi_lBuk_i + Z CA&_; + g
i=1 i=1
Denote the Markov parameter at time k as g, = CA*'B. Many works [0019; SRD19;
Fat20] that consider xy = 0 and zero-mean inputs use the following objective function

G = in ) |y — Guylf3, 1
arg min MHy ;|3 (1)
where u; = [ui_l Ui - ui_T]* and G = [gl gy - gn}.

T'wo important observations:
e The variance of y; grows with £ due to the term Zle CA&_;.

e Objective (1) effectively assumes constant covariance and is therefore suboptimal.
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Algorithm

Theorem 1 (Marginal likelihood (Th. 12.1 [Sar13])) Let Vi = {yi;1 < k} denote the
set of all observations up to time k. Let the initial condition be uncertain with
distribution p(Xy | ©). Then the marginal likelihood (3) is defined as L(O | V,) =
[T Lk(© | Vi), where Lx(© | Vi) is computed recursively in three stages for k =
1,2,...: prediction

L 2
exp (—s5|| Xps1 — AX) — Buy
p( X1 | ©, Vi) _/ (=l X Is)

Vo' s

update,
CXp (_%HYIHl — CXk+1||%)

p(Xk—l-l ’ @7yk+1) — p(Xk—l—l ‘ @7yk) d :
V2 ' |T)zp(Yiia | ©, D)

and marginalization,

_ 1 2
eXp | —5|| Yk CX;
Li41(O | Vi) = /p(Xk+1 | ©, Vi) (=2l aillr)

V2r|T):

For linear-Gaussian systems such as (2), the Kalman filter is used to compute the above

ka+1. (6)

three distributions.
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The estimated Markov parameters are then fed into the ERA //
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Results

Linear pendulum with periodic forcing
e Our method achieves orders of magnitude gains in performance
e The MAP estimate remains robust when data are noisy and/or sparse

e Due to inclusion of the process noise term, the estimate is not overfit

3 =L [ [ w-nafe]

The contour plots metric is defined below

100 MAP n
- MSE: 1
log ( : =1 2 ) ,  where MSE; = — E (P — jfk)z,
n
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Periodic limit cycle of forced Duffing oscillator
e \We are able to learn non-zero initial conditions

e Our method can be applied to nonlinear systems
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Conclusion

The main takeaways of our research are

e Accounting for parameter, model, and measurement uncertainties and
their interactions in the objective function yields more accurate estimates
that are more robust to sparse/noisy data

e Using a stochastic dynamics model, even for deterministic systems, has a
regularizing effect that can prevent overfitting
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