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Motivation
Many existing objective functions for system identification face the following challenges:
• They do not consider the existence and/or interaction of the three primary sources of

uncertainty: (1) parameter, (2) model, and (3) measurement [GG20]

• As a result, they struggle to find good estimates when the data are noisy and/or sparse
The challenges and benefits of neglecting and including all three sources of uncertainty in
the objective function are shown below
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The table below displays key observations.

(a) (b) (c)

Steep optimization surfaces without plateaus 3 7 3

Suppresses local minima 7 3 3

Increased confidence with data 3 7 3

Our contributions include:

• A new objective function for system ID that differs from existing Bayesian approaches
by using a stochastic dynamics to account for model error

• Empirical evidence that our method yields greater accuracy and precision compared to
a least squares-based method, even when paired with the more robust ERA [JP85]

Least Squares Estimation of Markov Parameters + ERA
Given system (2), the input-output equation is written as

yk = CAkx0 +

k∑
i=1

CAi−1Buk−i +

k∑
i=1

CAξk−i + ηk

Denote the Markov parameter at time k as gk = CAk−1B. Many works [OO19; SRD19;
Fat20] that consider x0 = 0 and zero-mean inputs use the following objective function

Ĝ = arg min
G

n∑
i=0

‖yi −Gūi‖2
2, (1)

where ūi =
[
ui−1 ui−2 · · · ui−T

]∗
and G =

[
g1 g2 · · · gn

]
.

Two important observations:

• The variance of yk grows with k due to the term
∑k

i=1 CAξk−i.

• Objective (1) effectively assumes constant covariance and is therefore suboptimal.

The estimated Markov parameters are then fed into the ERA

Probabilistic Formulation and Resulting Objective
We consider linear time-invariant models and assume the uncertainty is additive Gaussian

Xk+1 = AXk + Buk + ξk,

Yk = CXk + ηk,

ξk ∼ N (0,Σ),

ηk ∼ N (0,Γ),
(2)

The interaction of the uncertainty can be visualized through the Bayesian network

Y1 Y2 Y3 · · · 3. Measurement uncertainty

X1 X2 X3X0 · · · 2. Model uncertainty

θ 1. Measurement uncertainty

Goal: Evaluate the posterior distribution p(Θ | Yn)

Bayes’ rule: p(Θ | Yn) =
L(Θ;Yn)p(Θ)

p(Yn)
, where L(Θ;Yn) := p(Yn | Θ)

In order to obtain the marginal likelihood L(Θ;Yn), we must marginalize out the states

L(Θ;Yn) =

∫
L(Θ,Xn | Yn)dXn. (3)

We use the MAP optimization objective to obtain our model estimate

ΘMAP = arg max
Θ

logL(Θ;Yn) + log p(θ).

Algorithm

Theorem 1 (Marginal likelihood (Th. 12.1 [Sär13])) Let Yk ≡ {yi; i ≤ k} denote the
set of all observations up to time k. Let the initial condition be uncertain with
distribution p(X0 | Θ). Then the marginal likelihood (3) is defined as L(Θ | Yn) =∏n

k=1Lk(Θ | Yk), where Lk(Θ | Yk) is computed recursively in three stages for k =
1, 2, . . .: prediction

p(Xk+1 | Θ,Yk) =

∫
exp
(
−1

2‖Xk+1 −AXk −Buk‖2
Σ

)
√

2π
dx|Σ|12

p(Xk | Θ,Yk)dXk (4)

update,

p (Xk+1 | Θ,Yk+1) = p(Xk+1 | Θ,Yk)
exp
(
−1

2‖yk+1 −CXk+1‖2
Γ

)
√

2π
dy|Γ|12p(Yk+1 | Θ,Yk)

(5)

and marginalization,

Lk+1(Θ | Yk+1) =

∫
p(Xk+1 | Θ,Yk)

exp
(
−1

2‖yk+1 −CXk+1‖2
Γ

)
√

2π
dy|Γ|12

dXk+1. (6)

For linear-Gaussian systems such as (2), the Kalman filter is used to compute the above
three distributions.

Funding and References
AFOSR Program in Computational Mathematics

References
[Fat20] Salar Fattahi. “Learning Partially Observed Linear Dynamical Systems from Logarithmic Number of Samples”. In: arXiv preprint arXiv:2010.04015 (2020).

[GG20] Nicholas Galioto and Alex Arkady Gorodetsky. “Bayesian system ID: optimal management of parameter, model, and measurement uncertainty”. In: Nonlinear Dynamics 102 (2020), pp. 241–267. issn:
1573-269X. doi: 10.1007/s11071-020-05925-8.

[JP85] Jer-Nan Juang and Richard S Pappa. “An eigensystem realization algorithm for modal parameter identification and model reduction”. In: Journal of guidance, control, and dynamics 8.5 (1985),
pp. 620–627.

[OO19] Samet Oymak and Necmiye Ozay. “Non-asymptotic identification of lti systems from a single trajectory”. In: 2019 American Control Conference (ACC). IEEE. 2019, pp. 5655–5661.

[Sär13] Simo Särkkä. Bayesian filtering and smoothing. Vol. 3. Cambridge University Press, 2013.

[SRD19] Tuhin Sarkar, Alexander Rakhlin, and Munther A Dahleh. “Finite-time system identification for partially observed lti systems of unknown order”. In: arXiv preprint arXiv:1902.01848 (2019).

Results
Linear pendulum with periodic forcing

• Our method achieves orders of magnitude gains in performance

• The MAP estimate remains robust when data are noisy and/or sparse

• Due to inclusion of the process noise term, the estimate is not overfit[
φ̇

φ̈

]
=

[
0 1
−g/L 0

] [
φ

φ̇

]
+

[
0
1

]
cos(t), yk =

[
1 0
] [φk
φ̇k

]
,

The contour plots metric is defined below

log

( ∑100
i=1MSEMAP

i∑100
i=1MSELS+ERA

i

)
, where MSEi =

1

n

n∑
k=1

(φk − ŷk)
2,

Training Testing

Periodic limit cycle of forced Duffing oscillator

• We are able to learn non-zero initial conditions

• Our method can be applied to nonlinear systems[
ẋ
ẍ

]
=

[
0 1
α δ

] [
x
ẋ

]
+ β

[
0
x3

]
+

[
0
1

]
γ cos(ωt), yk =

[
1 0
] [xk
ẋk

]
.

Conclusion
The main takeaways of our research are

• Accounting for parameter, model, and measurement uncertainties and
their interactions in the objective function yields more accurate estimates
that are more robust to sparse/noisy data

• Using a stochastic dynamics model, even for deterministic systems, has a
regularizing effect that can prevent overfitting


