
The objective functions of DMD and SINDy are special cases of the 
negative log posterior under certain modeling assumptions

DMD Optimization and Assumptions SINDy Optimization and Assumptions

i. noiseless measurements
ii. identity observations
iii. linear dynamics
iv. maximum likelihood estimator
v. identity process covariance

i. noiseless measurements
ii. identity observations
iii. assumed time stepping scheme for derivatives
iv. a sparsity promoting prior
v. identity process covariance

Bayesian Approaches for Data-Driven 
Learning of Dynamical Systems

Nick Galioto and Alex Gorodetsky
Department of Aerospace Engineering, University of Michigan

−L𝑝 𝜃, 𝑥 𝑦 ∝෍

𝑖=1

𝑁

| 𝑦𝑖 − ℎ 𝑥𝑖 , 𝜃ℎ |Γ
2 +෍

𝑖=1

𝑁

|𝑥𝑖 −Ψ 𝑥𝑖−1, 𝜃Ψ |Σ
2 − L𝑝(𝜃)

𝐴 = argmin
෨𝐴

෍

𝑖=1

𝑁

𝑦𝑖 − ሚ𝐴𝑦𝑖−1
2

𝜃Ψ = argmin
෩𝜃

෍

𝑖=1

𝑁
𝑦𝑖 − 𝑦𝑖−1

Δ𝑡
− Ξ 𝑦𝑖−1 ෨𝜃

2

+ 𝜆| ෨𝜃 |

Full Negative Log Posterior

Problem Statement

Linear Pendulum: Bayes and DMD Comparison

Nonlinear Examples

Probabilistic Formulation

Algorithm

References
[1] Schmid, Peter J. “Dynamic Mode Decomposition of Numerical and Experimental 
Data.” Journal of Fluid Mechanics, vol. 656, 2010, pp. 5–28.
[2] Brunton, Steven L., Joshua L. Proctor, and J. Nathan Kutz. “Discovering Governing 
Equations from Data by Sparse Identification of Nonlinear Dynamical Systems.” 
Proceedings of the National Academy of Sciences 113.15 (2016): 3932–3937.
[3] Andrieu, Christophe, and Gareth O. Roberts. “The Pseudo-Marginal Approach for 
Efficient Monte Carlo Computations.” The Annals of Statistics 37.2 (2009): 697–725. 
[4] Galioto, Nicholas and Gorodetsky, Alex. “Bayesian Inference for Data-Driven System 
Identification.” [In preparation]

𝑥𝑘 = 𝐴 𝜃Ψ 𝑥𝑘−1 + 𝜉𝑘 , 𝜉𝑘 ∼ 𝒩 0, Σ 𝜃Σ
𝑦𝑘 = 𝑥𝑘 + 𝜂𝑘 , 𝜂𝑘 ∼ 𝒩 0, Γ 𝜃Γ

𝐴 𝜃Ψ =
𝜃1 𝜃2
𝜃3 𝜃4

, Σ 𝜃Σ =
𝜃5 0
0 𝜃5

, Γ 𝜃Γ =
𝜃6 0
0 𝜃6

We require a Markov chain Monte Carlo (MCMC) algorithm to sample 
from the parameter-state joint posterior.
• Challenge: The states are high dimensional making sampling costly 

and inefficient
• Solution: Pseudo-marginal MCMC [3]

To sample from the parameter marginal posterior, the following algorithm 
is used:

for 𝑗 = 1 to 𝑀 do
1. Sample from proposal 𝜃∗ ∼ 𝜋 𝒳𝑛, 𝜃 𝒴𝑛 = 𝜋 𝜃 𝑝(𝒳𝑛|𝜃, 𝒴𝑛)
for 𝑘 = 1 to 𝑁 do

2. Predict 𝑝 𝑥𝑘 𝜃
∗, 𝒴𝑘−1 = ∫ 𝑝 𝑥𝑘 𝜃

∗, 𝑥𝑘−1 𝑝 𝑥𝑘−1 𝜃
∗, 𝒴𝑘−1 𝑑𝑥𝑘−1

3. Compute the evidence 𝑝 𝑦𝑘 𝜃
∗, 𝒴𝑘−1 =

∫ 𝑝 𝑦𝑘 𝜃,
∗ 𝑥𝑘 𝑝 𝑥𝑘 𝜃

∗, 𝒴𝑘−1 𝑑𝑥𝑘

4. Update 𝑝 𝑥𝑘 𝜃
∗, 𝒴𝑘 =

𝑝 𝑦𝑘 𝜃
∗, 𝒴𝑘−1 𝑝(𝜃∗|𝒴𝑘−1 )

𝑝(𝑦𝑘|𝒴𝑘−1)

5. Update 𝑝 𝜃∗ 𝒴𝑘 =
𝑝 𝑦𝑘 𝜃

∗, 𝒴𝑘−1 𝑝(𝜃∗|𝒴𝑘−1)

𝑝(𝑦𝑘|𝒴𝑘−1)

end for

6. Accept 𝜃∗ with probability 𝛼(𝜃, 𝜃∗) =
𝑝(𝜃∗|𝒴𝑛)𝜋 𝜃

𝑝(𝜃|𝒴𝑛)𝜋 𝜃∗

end for

Steps 2-4 are computed in the
• Linear case with a Kalman filter
• Nonlinear case with an unscented Kalman filter

Data-driven methods are popular for system identification, but existing 
algorithms carry the following problems:
• Imprecise modeling accounting for model form error
• Lack of robustness to noisy data
We seek a probabilistic modeling framework that
• Enables a Bayesian inference approach to account for uncertainty
• Recovers existing common approaches under idealized conditions

• Dynamic Mode Decomposition (DMD) [1] 
• Sparse Identification of Nonlinear Dynamics (SINDy) [2].

• Enables deviation from idealized conditions

Approach: Bayesian methods use a flexible model to inform the negative 
log posterior with guaranteed optimality for derived estimators (mean, 
MAP, mode) -- whereas many existing system ID methods solve heuristic 
optimization problems, yielding sub-optimal estimators.

1. Define a dynamical system in its most general form:
𝑥𝑘 = Ψ 𝑥𝑘−1, 𝜃Ψ + 𝜉𝑘,       𝜉𝑘∼ 𝒩 0, Σ(𝜃Σ) ;

𝑦𝑘 = ℎ 𝑥𝑘, 𝜃ℎ + 𝜂𝑘, 𝜂𝑘∼ 𝒩 0, Γ 𝜃Γ .
2. Utilize Bayes’ rule to derive parameter-state joint posterior

𝑝 𝜃, 𝑥 𝑦 ∝ 𝑝 𝑦 𝜃, 𝑥 𝑝 𝑥|𝜃 𝑝(𝜃),
where the right-hand probabilities are defined as

𝑝 𝑦 𝜃, 𝑥 = ς𝑘=1
𝑁 𝒩 𝑦𝑘; ℎ 𝑥𝑘, 𝜃ℎ , Γ 𝜃Γ ,

𝑝 𝑥 𝜃 = ς𝑘=1
𝑁 𝒩 𝑥𝑘; Ψ 𝑥𝑘−1, 𝜃Ψ , Σ 𝜃Σ .

Taking the negative log yields the result given in the top middle panel.

The marginal posterior is derived similarly
𝑝 𝜃 𝑦 ∝ 𝑝 𝑦 𝜃 𝑝(𝜃).

Reconstruction

Prediction

ሶ𝑥1 = 𝑥2
ሶ𝑥2 = 𝜇 1 − 𝑥1

2 𝑥2 − 𝑥1

ሶ𝑥 = 𝜎(𝑦 − 𝑥)
ሶ𝑦 = 𝑥 𝜌 − 𝑧 − 𝑦
ሶ𝑧 = 𝑥𝑦 − 𝛽𝑧

Van der Pol Oscillator

Lorenz 63
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