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Abstract— This paper proposes a probabilistic Bayesian
formulation for system identification (ID) and estimation of
nonseparable Hamiltonian systems using stochastic dynamic
models. Nonseparable Hamiltonian systems arise in models
from diverse science and engineering applications such as
astrophysics, robotics, vortex dynamics, charged particle dy-
namics, and quantum mechanics. The numerical experiments
demonstrate that the proposed method recovers dynamical sys-
tems with higher accuracy and reduced predictive uncertainty
compared to state-of-the-art approaches. The results further
show that accurate predictions far outside the training time
interval in the presence of sparse and noisy measurements
are possible, which lends robustness and generalizability to
the proposed approach. A quantitative benefit is prediction
accuracy with less than 10% relative error for more than 12
times longer than a comparable least-squares-based method on
a benchmark problem.

I. INTRODUCTION

Nonseparable Hamiltonian systems arise as models in
many science and engineering applications such as multibody
dynamics and control in robotics [1], the Kozai-Lidov mech-
anism in astrophysics [2], particle accelerators in accelerator
physics [3], 3D vortex dynamics in fluid mechanics [4],
and the nonlinear Schrödinger equation in quantum me-
chanics [5]. These systems demonstrate complex nonlinear
behavior while possessing an underlying highly structured
geometry encoded by a Hamiltonian. Uncovering a system’s
Hamiltonian can reveal key insights into its physical proper-
ties such as mass or energy conservation. Learning Hamil-
tonian models directly from data is becoming increasingly
important in diverse areas such as astrophysics, robotics, fluid
dynamics, plasma physics, and quantum mechanics where
first-principle modeling can yield highly complex model
structures or such models are not available.

For these purposes, many recent methods have embedded
strong physics-motivated inductive priors into their learning
framework to develop structure-preserving neural networks
for Hamiltonian systems, e.g., [6], [7], [8], [9]. In another
research direction, techniques based on sparse identification
of nonlinear dynamics (SINDy) [10] and orthogonal poly-
nomials [11] have also been used for learning Hamiltonian
systems from data, but these techniques tend to break down
when the data are noisy/sparse since they rely on numerical
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approximations of the time derivatives of the data. To han-
dle uncertainty and increase robustness, Bayesian inference
techniques based on Gaussian process regression [12], [13]
and/or consideration of stochastic dynamics [14] have been
developed. However, a majority of these approaches assume
that the Hamiltonian system is separable, i.e., the system
Hamiltonian can be written as H(q,p) = T (p) + U(q)
where q is the position, p is the momentum, T (p) is the
kinetic energy, and U(q) is the potential energy.

For nonseparable Hamiltonian systems, nonseparable sym-
plectic neural networks were recently developed in [15] by
embedding an appropriate symplectic integrator into the neu-
ral network architecture. Instead of learning the symplectic
maps, generating function neural networks (GFNNs) in [16]
learn Hamiltonian models by approximating the generating
functions corresponding to these symplectic maps. Although
both of these approaches learn nonseparable Hamiltonian
systems from noisy data, they use an optimization objective
and modeling format that requires large datasets. These
methods use data from over a thousand (up to a million in
the case of GFNN) short trajectories, each consisting of five
or fewer data points, even for one-dimensional problems.

In this paper, we learn a nonseparable Hamiltonian system
from noisy and sparse data using a stochastic model to ac-
count for model errors that always exist in any approximation
format. Previously, we have shown the consideration of such
stochastic process noise aids system recovery by smoothing
the learning objective [17]. Building on the Bayesian system
identification (ID) work in [17], we embed the physics un-
derlying nonseparable Hamiltonian structure into the learning
formulation to develop a probabilistic learning method that
preserves the symplectic structure intrinsic to Hamiltonian
dynamics. The main contributions of this work are:

1) We extend the Bayesian system ID method of [17]
to nonseparable Hamiltonian systems by embedding
an explicit structure-preserving numerical integrator
within the physics-informed objective;

2) We present detailed numerical results for direct com-
parison between symplectic and non-symplectic ap-
proaches that demonstrate the advantage of symplec-
tic structure preservation. The symplectic approach
achieves 30% reduction in relative state error over the
non-symplectic approach;

3) We apply the Bayesian method to a dataset with
multiple trajectories and non-Gaussian measurement
noise for the first time to demonstrate its versatility
and robustness. Through this study, we also show that
the Gaussian filtering approaches we leverage are not

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 6742

20
22

 IE
EE

 6
1s

t C
on

fe
re

nc
e 

on
 D

ec
is

io
n 

an
d 

C
on

tro
l (

C
D

C
) |

 9
78

-1
-6

65
4-

67
61

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
C

D
C

51
05

9.
20

22
.9

99
25

71

Authorized licensed use limited to: University of Michigan Library. Downloaded on November 21,2023 at 04:02:09 UTC from IEEE Xplore.  Restrictions apply. 



overly restrictive even for nonlinear dynamics. After
training on a noisy dataset, the proposed method has a
relative error below 10% and does so for more than 12
times longer than the least-squares comparison method
on a trajectory outside the training set.

This paper is structured as follows. Section II reviews the
basics of nonseparable Hamiltonian systems and describes a
probabilistic formulation of the system ID problem. Section
III presents the proposed structure-preserving algorithm for
learning nonseparable Hamiltonian systems. In Section IV,
we apply the proposed Bayesian algorithm to two datasets
generated from nonseparable Hamiltonian systems. We also
compare results from the Bayesian approach with other
structure-preserving learning works. Finally, in Section V, we
provide concluding remarks and future research directions.

II. BACKGROUND

In Section II-A, we introduce nonseparable Hamiltonian
systems, followed by their structure-preserving time inte-
gration using explicit symplectic integrators in Section II-
B. We then review the probabilistic modeling framework in
Section II-C. This provides the necessary background for the
structure-preserving Bayesian learning method described in
Section III.

A. Nonseparable Hamiltonian systems

The governing equations for finite-dimensional canonical
Hamiltonian systems are

q̇ =
∂H(q,p)

∂p
, ṗ = −∂H(q,p)

∂q
, (1)

where H , the Hamiltonian, is a function of the canonical
position q and momentum p. Many Hamiltonian systems
of interest to engineers and scientists (e.g., [1]-[5]) are not
additively separable with respect to functions of the position
q and momentum p. Such Hamiltonian systems are said to
be nonseparable. Unlike the separable Hamiltonian systems
with H(q,p) = T (p)+U(q), the governing equations in (1)
cannot be further simplified for nonseparable Hamiltonians.

These governing equations possess physically meaningful
geometric properties that can be described in the form of
symmetries, symplecticity, first integrals, and energy con-
servation. Preservation of these qualitative features in a
numerical simulation is crucial for accurate long-time predic-
tion of Hamiltonian dynamics. Using ideas from geometric
mechanics, the field of geometric numerical integration has
developed a variety of structure-preserving time integrators
for Lagrangian/Hamiltonian systems, e.g., [18], [19].

Example 1 (Cherry Problem): Consider the following
nonseparable Hamiltonian from [20] with

H(q1, q2, p1, p2) =
1

2
(q21 + p21)− (q22 + p22)

+
1

2
p2(p

2
1 − q21)− q1q2p1. (2)

This four-dimensional dynamical system is a challenging
example because it possesses a negative energy mode (NEM)
that leads to an explosive nonlinear growth of perturbations

for arbitrarily small disturbances. These NEMs occur in
several important infinite-dimensional dynamical systems,
e.g., gravitational instability of interpenetrating fluids [21]
and magnetosonic waves in the solar atmosphere [22].

B. Tao’s explicit symplectic integrator

While explicit symplectic integration has been exten-
sively studied for separable Hamiltonian systems and specific
subclasses of nonseparable Hamiltonian systems, explicit
symplectic approximations of general nonseparable Hamil-
tonian systems H(q,p) is an active research topic. Recently,
explicit symplectic integrators for arbitrary nonseparable
Hamiltonian systems were presented in [23]. The derivation
of these integrators is based on the idea of an extended phase
space. For an arbitrary nonseparable Hamiltonian H(q,p),
we first introduce fictitious configuration q̃ and fictitious
momentum p̃ corresponding to q and p, respectively. Next,
we define an augmented Hamiltonian

H̄(q,p, q̃, p̃) := H(q, p̃)︸ ︷︷ ︸
Ha

+H(q̃,p)︸ ︷︷ ︸
Hb

+ ω ·
(
∥q− q̃∥22/2 + ∥p− p̃∥22/2

)︸ ︷︷ ︸
Hc

, (3)

where Ha := H(q, p̃) and Hb := H(q̃,p) correspond to
two copies of the original nonseparable Hamiltonian system
with mixed-up positions and momenta; Hc is an artificial
restraint; and ω is a constant that controls the binding of
the two copies. The governing equations for the augmented
Hamiltonian system (3) are

q̇ = ∇pH(q̃,p) + ω(p− p̃), ṗ = −∇qH(q, p̃)− ω(q− q̃),

˙̃q = ∇p̃H(q, p̃) + ω(p̃− p), ˙̃p = −∇q̃H(q̃,p)− ω(q̃− q).

The introduction of fictional variables q̃ and p̃ along with
a specific choice for the augmented Hamiltonian in (3)
decouples the position q and p in the extended phase space,
i.e., q̇ and ṗ are independent of q and p, respectively. Unlike
the original nonseparable Hamiltonian H(q,p), the aug-
mented Hamiltonian H̄(q,p, q̃, , p̃) is amenable to explicit
symplectic integration. In this work, we use second-order
explicit symplectic method ψ∆t based on Strang splitting

ψ∆t := ψ
∆t/2
Ha

◦ ψ∆t/2
Hb

◦ ψ∆t
ωHc

◦ ψ∆t/2
Hb

◦ ψ∆t/2
Ha

, (4)

where ψ∆t
Ha
, ψ∆t

Hb
, and ψ∆t

ωHc
are the time-∆t flow of Ha, Hb,

and ωHc. This allows us to obtain an explicit symplectic
integrator for the augmented Hamiltonian H̄ via composition
of explicit symplectic Euler substeps with step size ∆t/2.
Explicit update equations for these individual flows can be
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written as

ψ∆t
Ha

:


q
p
q̃
p̃

 →


q

p−∆tHq(q, p̃)
q̃+∆tHp̃(q, p̃)

p̃

 ,

ψ∆t
Hb

:


q
p
q̃
p̃

 →


q+∆tHp(q̃,p)

p
q̃

p̃−∆tHq̃(q̃,p)

 ,

ψ∆t
ωHc

:


q
p
q̃
p̃

 → 1

2


(
q+ q̃
p+ p̃

)
+R(∆t)

(
q− q̃
p− p̃

)
(
q+ q̃
p+ p̃

)
−R(∆t)

(
q− q̃
p− p̃

)
 ,

where R(∆t) :=

[
cos(2ω∆t)I sin(2ω∆t)I
− sin(2ω∆t)I cos(2ω∆t)I

]
.

Given a nonseparable Hamiltonian H(q,p) with initial
condition [q(0)⊤,p(0)⊤]⊤ = [q⊤

0 ,p
⊤
0 ]

⊤, we obtain ex-
plicit symplectic approximations of the dynamics by in-
tegrating the augmented Hamiltonian H̄(q,p, q̃, p̃) with
[q(0)⊤,p(0)⊤, q̃(0)⊤, p̃(0)⊤]⊤ = [q⊤

0 ,p
⊤
0 ,q

⊤
0 ,p

⊤
0 ]

⊤.

C. Bayesian system identification

In the Bayesian learning framework, the Hamiltonians
are unknown. Furthermore, they are parametrized in some
approximation format, e.g., polynomial or neural network
expansion.

We first model the system probabilistically as a hidden
Markov model. Let Xk = [q⊤

k ,p
⊤
k ]

⊤ ∈ R2d be the random
variable representing a belief of the system’s state, and let
the subscript k be the index corresponding to the time tk at
which output data yk ∈ Rdy is observed. The output data
is modeled as a realization of the random variable Yk ∈
Rdy that represents a belief of the systems true output. The
state-transition operator Ψ : R2d × Rdθθθ → R2d maps the
state Xk at an arbitrary time tk to the state Xk+1, and the
observation operator h : R2d × Rdθθθ → Rdy maps the state
Xk to the output Yk. Both operators may be parametrized
by the random variable θθθ ∈ Rdθθθ . The model of the system
dynamics is described by

Xk+1 = Ψ(Xk, θθθΨ) + ξξξk, ξξξk ∼ N (0,Σ(θθθΣ)),

Yk = h(Xk, θθθh) + ηηηk, ηηηk ∼ N (0,Γ(θθθΓ)).
(5)

The parameters are partitioned as θθθ = (θθθΨ, θθθh, θθθΣ, θθθΓ); the
process noise ξξξk and measurement noise ηηηk are additive,
zero-mean Gaussian with unknown covariances Σ(θθθΣ) and
Γ(θθθΓ), respectively. Gaussian noise is chosen not only be-
cause it is easy to work with, but also because for a given
mean and covariance, the Gaussian distribution satisfies the
Principle of Maximum Entropy [24], meaning it minimizes
the amount of information that must be assumed beyond the
first two moments.

In this model, we assume that there exists error/noise in
both the state propagation and observation operators, and we
therefore learn a stochastic system rather than a deterministic
one. The source of the measurement error is typically sensor
noise, and the term ηηηk is included in nearly all system ID

models. The error in the state propagation operator arises due
to the uncertainty in both the parameters θθθΨ and in the choice
of the model structure. In other words, unless the model is
perfectly known, the output of Ψ will always carry some
amount of error with respect to the “true” state. The process
noise ξξξk is not usually included in system ID models, but
in [17], it was shown to improve the robustness of system ID
methods when faced with sparse and/or noisy data. In this
paper, we will further demonstrate the benefits of accounting
for the process error.

The goal of Bayesian inference is to compute a posterior
distribution for θθθ that represents available knowledge of the
parameter values given all of the data that we have so far
collected. This posterior distribution is denoted as π(θθθ|Yn)
where Yn := (Y1 = y1, . . . ,Yn = yn) is the collection of
data points yk treated as realizations of the random variables
Yk for k = 1, . . . , n. Representing available knowledge as a
distribution rather than a single estimated point is especially
desirable in cases where the data are incomplete/weakly
informative, such as sparse and/or noisy data. In these cases,
the precision of the parameter estimate is limited, and it is
therefore useful to be able to represent both the parameters
and the predicted system output given these parameters as
distributions.

To compute the posterior distribution, we factorize
π(θθθ|Yn) using Bayes’ theorem:

π(θθθ|Yn) =
L(θθθ;Yn)π(θθθ)

π(Yn)
∝ L(θθθ;Yn)π(θθθ), (6)

where L(θθθ;Yn) := π(Yn|θθθ) is the likelihood, π(θθθ) is the
prior, and π(Yn) is the evidence. Because π(Yn) does not
depend on the parameters, we treat it as a normalizing con-
stant and do not need to evaluate it. The prior is chosen by the
user, and is usually chosen to be easy to evaluate. The main
challenge of evaluating the posterior then is the evaluation of
the likelihood. Since the dynamics model is stochastic, the
state Xk is also uncertain, and, although we are interested
in the marginal likelihood L(θθθ;Yn), we are only able to
directly compute the joint likelihood L(Xn, θθθ;Yn), where
Xn := (X1, . . . ,Xn). To extract the marginal likelihood
from the joint likelihood requires the evaluation of the
high-dimensional integral

∫
L(Xn, θθθ;Yn)dXn. This costly

computation can be avoided, however, by factorizing the
marginal likelihood as follows:

L(θθθ;Yn) =

n∏
k=1

Lk(θθθ;Yk), (7)

and by using the algorithm in [25, Thm 12.1] to recursively
evaluate each term Lk(θθθ;Yn). When there exist nonlineari-
ties in either of the functions Ψ(·, ·) or h(·, ·), the distribu-
tions Lk(θθθ;Yk) will be non-Gaussian, but we approximate
them as Gaussian using the unscented Kalman filter (UKF)
for computational efficiency. See [26], [27], [28] for a similar
approach. The computational complexity of the integrator (4)
is O(d3 + dG), where G denotes the cost of evaluating the
gradient of the Hamiltonian. Based on the analysis in [17],
the computational complexity of evaluating the marginal
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likelihood embedded with Tao’s integrator is O(nd3+ndG).
For more details on this algorithm, see [17], [14].

For other types of noise in system (5) such as multiplica-
tive or non-Gaussian noise, different filtering algorithms can
be used to evaluate the marginal likelihood with possibly
improved approximation quality. If the noise is multiplica-
tive, a Kalman filter variation designed for multiplicative
noise [29] can be used. If extreme non-Gaussianity is present
in the estimation distribution, a particle filter [30] can be used
to approximate the marginal likelihood with an empirical
discrete distribution rather than a Gaussian, but the cost of the
algorithm increases significantly. In Section IV-B, we break
the assumption of additive, Gaussian noise and show that the
Bayesian algorithm with the UKF can still deliver accurate
estimates. The numerical results in Section IV-B demonstrate
that the Bayesian algorithm has predictive power even when
the assumptions of system (5) are not strictly met.

III. PROBABILISTIC LEARNING OF NONSEPARABLE
HAMILTONIAN SYSTEMS

This section presents a novel methodology for incor-
porating physical knowledge of nonseparable Hamiltonian
systems into the Bayesian learning framework. This discus-
sion includes the parametrization of the model dynamics in
Section III-A, the selection of a structure-preserving time
integrator within the dynamics propagator in Section III-B,
and an outline of the proposed computational procedure in
Section III-C.

A. Parametrizing nonseparable Hamiltonian systems

Our goal is to leverage prior knowledge of the underlying
system to inform the parametrization of a model. Recall
from Section II-A that a Hamiltonian system is defined
by a function of the generalized position and momentum
known as the Hamiltonian. To leverage this fact, we assume
that the generalized coordinate frame is known and attempt
to directly learn the Hamiltonian. By estimating a model
of the Hamiltonian and deriving the dynamics from this
model according to (1), we guarantee that the predicted flow
will also be Hamiltonian. This modeling choice makes the
predictions more physically meaningful and also serves to
restrict the model search space, which can help optimization.

As an example of a parametrization of the Hamiltonian, we
consider a linear combination of nonlinear basis functions. In
this work, we are concerned with nonseparable Hamiltonians,
so we denote the model of the Hamiltonian generally as the
differentiable function H̃(q,p, θθθΨ). Then we approximate
the Hamiltonian up to some additive constant C as

H̃(q,p, θθθΨ) = Φ⊤(q,p)θθθΨ + C, (8)

where Φ(q,p) ∈ RN is a vector whose ith component is the
differentiable basis function ϕi : R2d → R for i = 1, . . . , N .
The gradient of the Hamiltonian follows

∇H̃(q,p, θθθΨ) = ∇Φ⊤(q,p)θθθΨ, (9)

where ∇Φ(q,p) ∈ RN×2d is a matrix where the ith column
is the gradient ∇ϕi with respect to the state [q⊤,p⊤]⊤.

The learning framework of Section II-C is applicable to
any arbitrary model parametrization including neural net-
works and other nonlinear approximations.

B. Embedding explicit symplectic integrators into the
Bayesian learning framework

In this subsection, we incorporate the stochastic nonsepa-
rable Hamiltonian into the Bayesian system ID framework.
The key idea is to exploit knowledge of nonseparable Hamil-
tonian systems and their structure-preserving time integrators
to inform the design of the state propagator Ψ(qk,pk;θθθΨ) in
(5). We apply the second-order explicit symplectic integrator
ψ∆t from (4) to the parametrized nonseparable Hamiltonian
(8) to obtain

ψ∆t
θθθ := ψ

∆t/2

H̃a(θθθ)
◦ ψ∆t/2

H̃b(θθθ)
◦ ψ∆t

ωH̃c
◦ ψ∆t/2

H̃b(θθθ)
◦ ψ∆t/2

H̃a(θθθ)
,

where H̃a(θθθ) := H̃(q, p̃, θθθ) and H̃b(θθθ) := H̃(q̃,p, θθθ)
correspond to two copies of the parametrized nonseparable
Hamiltonian model with mixed-up positions and momenta,
and ωH̃c is an artificial restraint that controls the binding
of the two parametrized copies. We use ψ∆t

θθθ to encode
Hamiltonian structure into the propagator, i.e.,

Ψ(qk,pk;θθθΨ) := L† ◦ ψ∆t
θθθ ◦ L,

where L : [q⊤
k ,p

⊤
k ]

⊤ → [q⊤
k ,p

⊤
k ,q

⊤
k ,p

⊤
k ]

⊤ dupli-
cates the state to obtain the augmented state, and L† :
[q⊤

k ,p
⊤
k , q̃

⊤
k , p̃

⊤
k ]

⊤ → [q⊤
k ,p

⊤
k ]

⊤ operates on the augmented
state to yield the state in the original phase space. This
physics-informed choice of the propagator ensures that the
learned model will respect the geometric properties of the
true process, i.e., the learned model will be a canonical
nonseparable Hamiltonian system.

C. Learning setups

We consider two primary learning setups: (1) data are
collected from a single trajectory, and the goal is to predict
the future state of this trajectory; and (2) data are collected
from multiple trajectories with independent initial conditions,
and the goal is to predict the state trajectory at an arbitrary
initial condition. The first of these follows straightforwardly
from the framework of Section II-C, but the second requires
a small adaptation.

Let Y(m)
n be the collection of n data points measured

from the trajectory with initial condition x
(m)
0 . The factor-

ization of the likelihood (7) now becomes L(θθθ;Y(1,...,M)
n ) =∏M

m=1 L(θθθ;Y
(m)
n ), where each term L(θθθ;Y(m)

n ) is evaluated
using (7). This likelihood factorization has the added benefit
of being easily parallelized for computational efficiency.

The second learning setup is also considered in other
works related to learning Hamiltonian systems such as [11],
[15]. In this work, we focus specifically on comparing to [11]
since it uses the same parametrization (8) that we consider.
The method in [11] attempts to learn a linear mapping from
a dictionary of basis functions to the time derivatives by
solving the following optimization problem:

min
c∈RN

∥Ac− b∥2, (10)
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where each element of A and b is defined as

aij =
1

K

K∑
k=1

(
∇ϕi(qk,pk) · ∇ϕj(qk,pk)

)
, (11)

bi =
1

K

K∑
k=1

( [
ṗ⊤
k −q̇⊤

k

]⊤ · ∇ϕi(qk,pk)
)
, (12)

for 1 ≤ i, j ≤ N . Typically, data of q̇ and ṗ are not available
and must therefore be numerically approximated. Following
the approach of [11], we use a second-order finite difference
method for this approximation. Since this method solves a
linear least-squares problem, we henceforth refer to it as the
least-squares (LS) method.

D. Computational procedure

This subsection details the computational procedure that
we use to draw samples from the posterior and to make
predictions using these samples.

To draw samples, we use Markov chain Monte Carlo
(MCMC) sampling. Specifically, we use the delayed rejection
adaptive Metropolis (DRAM) [31] MCMC sampler. The
proposal is a Gaussian random walk, and the covariance of
this Gaussian is scaled by a factor of γ = 0.01 to use as the
second-tier proposal. We begin adaptation of the proposal
covariance after 200 samples and add ε = 10−10 to the
diagonal to maintain positive semidefiniteness. In all of the
examples, we start sampling at the MAP point found using
MATLAB’s fmincon optimizer.

Once we have samples from the posterior, we need to
choose how to use them for prediction. Two specific values of
the posterior predictive distribution, defined as π(XT |Yn) =∫
π(XT |θθθ)π(θθθ|Yn)dθθθ for arbitrary positive integer T , are

used in the results. First, the maximum a posteriori (MAP)
value θθθMAP of the parameter posterior is simply its maximum.
We use this to obtain the prediction xk = Ψk(x0, θθθ

MAP),
where Ψk denotes k compositions of the state propagator Ψ
for any k ∈ Z+. The other value is the expected value of the
posterior predictive distribution x1:T = E[π(XT |Yn)]. The
expected value is estimated as xk = 1

P

∑P
i=1 Ψ

k(x0, θθθi) for
any k ∈ Z+, where θθθi is the ith MCMC sample and P
the total number of MCMC samples. Typically, we use a
subset of samples drawn at regular intervals to perform this
estimation for the sake of computational practicality. We will
sometimes refer to this prediction point simply as the mean
estimate. The decision of which point to use can depend on a
number of variables such as the dynamics or the shapes of the
parameter posterior and/or posterior predictive distributions.
Since the points are easy to compute after sampling, heuristic
choices are typically an acceptable decision method.

IV. NUMERICAL EXPERIMENTS

In this section, we apply the Bayesian learning method
presented in Section III to the Cherry problem discussed
in Example 1. First, we compare the structure-preserving
Bayesian learning approach to a ‘physics-ignorant’ approach
where the propagator is equipped with a non-symplectic inte-
grator of the same order that does not preserve the underlying

Hamiltonian structure. The results of this comparison are
provided in Section IV-A and show the improvements in
accuracy gained by using a structure-preserving symplectic
integrator over a non-symplectic integrator of equivalent
order accuracy. Section IV-B, gives a comparison between
the proposed method and the LS method described in III-
C. This section demonstrates the greater robustness of the
proposed approach to noisy data.

In both sections, we parametrize the Hamiltonian with
polynomials up to total order three for a total of N = 34
basis functions. The type of polynomials used in each exam-
ple is given in the corresponding section. Each covariance
matrix is parametrized as an identity matrix scaled by an
unknown parameter: Σ(θθθΣ) = θ35I4 and Γ(θθθΓ) = θ36I4. We
place a Laplacian prior on θθθΨ to promote sparsity and half-
normal priors on θθθΣ and θθθΓ, which are the distributions of the
absolute value of a zero-mean Gaussian random variable. The
observation operator h is the identity such that we measure
the full state. The data and predictions are both generated
using the explicit symplectic integrator using a time step of
∆t = 0.01.

A. Training with a single initial condition

In this study, we consider the case where noisy data from
a single initial condition are used to learn the model, and
we compare numerical results far outside the training data
regime to demonstrate the generalizability of the presented
Bayesian learning algorithm.

For training the model, we select the initial condition
[q1(0), q2(0), p1(0), p2(0)]

⊤ = [0.15, 0.1,−0.05, 0.1]⊤ and
integrate the nonseparable Hamiltonian system up to t = 8.
We collect the data on the full state every 0.4 time units for
a total of 21 data points with zero-mean Gaussian noise with
standard deviation of σ = 0.01. For the learning problem, we
parametrize the nonseparable Hamiltonian using monomial
basis functions. To ensure proper convergence, we draw
2 × 105 samples, and discard the first 105 samples as a
conservative burn-in period.

Both symplectic and non-symplectic approaches in this
study use a learning time step of ∆t = 0.05 (five times the
time step used for prediction) to reduce computational time.
Despite the large learning step, the symplectic approach gives
accurate predictions far outside the training data regime,
see Figure 2a. For the non-symplectic approach, we use a
second-order Runge-Kutta integrator that does not preserve
the underlying Hamiltonian structure.

The MAP parameters of each posterior are used to simu-
late for t = 16 (100 % outside the training data regime) using
the explicit symplectic integrator. Figure 1 shows the learned
Hamiltonian values for the MAP point and their corre-
sponding posteriors for both symplectic and non-symplectic
approaches. The true Hamiltonian is −0.78× 10−2, and the
value of the Hamiltonian learned by the symplectic approach
is approximately −0.68×10−2. The Hamiltonian learned by
the non-symplectic approach is approximately −0.81×10−2.
Compared to the posterior from the symplectic approach in
Figure 1a, the posterior from the non-symplectic approach
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in Figure 1b reflects greater uncertainty in the Hamiltonian
estimate.

Figure 2 compares the reconstructed trajectories of the sys-
tem’s first state using the MAP point and the samples from
the posterior. For a fair comparison between the symplectic
and non-symplectic approaches, each trajectory is integrated
using the explicit symplectic integrator.1 We see in Figure 2
that the MAP estimate from the symplectic approach aligns
closely with the truth for the entire length of the simulation,
while the MAP point from the non-symplectic approach
gives inaccurate results after the end of the training time
interval at t = 8.

We also compute the following relative state error for both
the training data regime and testing data regime

e(i : j) =
∥x̂i:j − xi:j∥F

∥xi:j∥F
(13)

for positive integers i ≤ j where xi:j ∈ R2d×(j−i+1) is
the true state trajectory at times ti, . . . , tj , and x̂i:j is the
estimate of this trajectory. In the training data regime (t = 0
to t = 8), the relative state error, e(1 : n), for the symplectic
approach is 0.0877 whereas the relative state error for the
non-symplectic approach is 0.1307. In the testing data regime
(t = 8 to t = 16), the relative state error, e(n+ 1 : 2n), for
the symplectic approach is 0.2173 whereas the relative state
error for the non-symplectic approach is 0.3326. Thus, the
symplectic approach achieves approximately 30% reduction
in state error over the non-symplectic approach.

B. Training with multiple initial conditions

In this subsection, we consider the case where data are
collected from a number of different trajectories with inde-
pendent initial conditions (ICs), and our goal is to estimate
a model of the system that can give good prediction for an
arbitrary IC.

To gather the training data, we first randomly sample
M = 5 ICs from a Gaussian centered at the testing IC with
standard deviation 0.05. The testing IC is the same IC used in
the previous example. For each training IC, we integrate the
system for up to t = 8 and measure the state every 0.4 time
units for a total of 21 data points per trajectory including
the IC. Any trajectories that diverged during this time period
had their IC resampled. To complete the training dataset,
we add 10% relative noise, i.e., Yk = Xk(1 + uk) where
uk ∼ U [−0.10, 0.10] and U is the uniform distribution. This
is the same noise form used by [11].

We parametrize the Hamiltonian for the learning problem
with Legendre polynomials as basis functions and integrate
with the symplectic integrator with ∆t = 0.01 during
training. To find the MAP, we use the LS estimate as the
optimization starting point for θθθΨ and the starting point

1We assume that a non-symplectic learning approach would still actually
integrate the learned model with a symplectic integrator. This setting is
similar to the approach considered in [6] or [32] where the authors use non-
symplectic integrators for training structure-preserving neural networks and
then integrate the learned Hamiltonian models using symplectic integrators.
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Fig. 1: The learned Hamiltonians. The lighter blue and red
lines in (a) and (b) are the samples from the posteriors from
the symplectic and non-symplectic learning approaches. Both
approaches estimate the true Hamiltonian accurately with an
absolute energy error of less than 10−3. However, the non-
symplectic approach has much greater uncertainty.

10−6 for variance parameters θθθΣ and θθθΨ. Then we draw
104 samples from the posterior.

We compare the proposed structure-preserving learning
method to the LS method and present the results in Figure 3,
where every learned model was integrated with the explicit
symplectic integrator. Note that although [11] suggested a
method for denoising the data, we found that using the raw
data gave a better LS estimate in this problem. The training
data and ground truth are shown alongside the point estimates
from the LS and Bayesian methods in Figure 3a. Even though
the training ICs are all near the testing IC, we observe that
the testing trajectory in Figure 3b differs significantly from
the training trajectories. Figure 3a also shows that the mean
estimate is able to fit the training data fairly well, whereas
the LS estimate struggles due to the noisiness/sparsity of the
data. The fact that the mean estimate can fit the training data
even when the measurement noise is non-Gaussian further
demonstrates the robustness of the proposed approach.

Next, we illustrate the posterior predictive distribution on
the test IC in Figure 3b by plotting the trajectory estimate
from every 200th MCMC sample for a total of 50 samples.
We see that as time increases, the posterior starts to widen,
reflecting the growing uncertainty in the state with time.
We also observe that although both the LS and posterior
predictive mean match the truth very closely through t = 4,
the LS estimate deviates from the truth much earlier and
much more drastically than the mean estimate. Figure 3b
demonstrates that the Bayesian method is able to find models
that generalize well outside of the training set of the data.
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Fig. 2: Reconstruction error comparison for the training with single IC case. The MAP estimate for the symplectic approach
captures the nonseparable Hamiltonian dynamics accurately at t = 16 which is 100% outside the training data whereas the
MAP estimate for the non-symplectic approach yields inaccurate predictions outside the training data. The posterior for both
approaches grows as the system evolves further in time. The purple line indicates the end of the data collection period.

To compare the methods quantitatively, consider the rela-
tive error (13) over the first k time steps, i.e., e(1 : k). The
relative error of the mean estimate on the test IC stays under
10% for t = 18.22, while the LS estimate stays under this
threshold for only t = 1.49. The Bayesian method therefore
yields better long-time prediction performance.

V. CONCLUSIONS

We have developed a structure-preserving Bayesian learn-
ing approach for system ID of nonseparable Hamiltonian
systems using stochastic dynamic models. This approach ex-
pands the Bayesian system ID work in [17] by incorporating
knowledge of nonseparable Hamiltonian systems into the
learning framework. The numerical results demonstrate the
advantage of preserving the underlying geometric structure
for a challenging nonseparable Hamiltonian system that pos-
sesses a negative energy mode. Hamiltonian models learned
using the proposed method provide accurate predictions far
outside the training time interval and perform well even for
unknown initial conditions.

In future work, we would like to use neural networks
for parametrization in the proposed framework for learning
non-polynomial Hamiltonian systems. Moreover, while in
this work we assume additive noises in the probabilistic
model of the system dynamics (5), in many applications
the noise is multiplied by the state. It would be desirable
to extend the current approach to dynamical systems with
multiplicative noises. Finally, we have applied the structure-

preserving Bayesian learning method to a system with four
states. We would like to combine the proposed approach with
Hamiltonian operator inference [33] for structure-preserving
learning of reduced-order models of large-scale Hamiltonian
models.
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Hamiltonian systems from data,” Chaos: An Interdisciplinary Journal
of Nonlinear Science, vol. 29, no. 12, p. 121107, 2019.
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