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Abstract System identification of dynamical systems
is often posed as a least squares minimization problem.
The aim of these optimization problems is typically to
learn either propagators or the underlying vector fields
from trajectories of data. In this paper, we study a first
principles derivation of appropriate objective formula-
tions for system identification based on probabilistic
principles. We compare the resulting inference objec-
tive to those used by emerging data-driven methods
based on dynamic mode decomposition (DMD) and
system identification of nonlinear dynamics (SINDy).
We show that these and related least squares formu-
lations are specific cases of a more general objective
function. We also show that the more general objec-
tive function yields more robust and reliable recov-
ery in the presence of sparse data and noisy measure-
ments. We attribute this success to an explicit account-
ing of imperfect model forms, parameter uncertainty,
and measurement uncertainty. We study the computa-
tional complexity of an approximate marginal Markov
Chain Monte Carlo method to solve the resulting infer-
ence problem and numerically compare our results on
a number of canonical systems: linear pendulum, non-
linear pendulum, the Van der Pol oscillator, the Lorenz
system, and a reaction–diffusion system. The results of
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these comparisons show that in cases where DMD and
SINDy excel, the Bayesian approach performs equally
well, and in cases where DMD and SINDy fail to pro-
duce reasonable results, theBayesian approach remains
robust and can still deliver reliable results.
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MCMC · UKF-MCMC · Bayesian inference · DMD ·
SINDy

1 Introduction

Recovering nonlinear models of dynamical systems
from data is quickly becoming a primary enabling
technology for analysis and decision making in fields
spanning science and engineering where first princi-
ples models are often incomplete or simply unavail-
able. Examples range from forecasting the weather
and climate [1–3], predicting fluid flows [4–6], and
enabling adaptive control [7–10]. All of these fields
have a long history of developing estimation and sys-
tem identification techniques such as advancedKalman
filtering in forecasting [11,12], decomposition meth-
ods for computational fluid dynamics [13–15], and a
wide ranging set of schemes in adaptive control [16–
18]. In this paper, we compare the implicit and explicit
optimization formulations posed by several represen-
tative approaches, and we demonstrate that algorithms
that appropriately manage parameter, model, and mea-
surement uncertainty in a cohesive manner are often
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more robust than more standard least squares-based
approaches.

For any system identification approach, there are two
primary challenges: (1) parameterizing a model space
over which to search and (2) posing an optimization
problem whose minimum yields an optimal model. A
greatmajority of recentwork has focused on addressing
the first challenge, primarily due to the rapid availabil-
ity of machine learning software. These recent works
seek to learn neural network representations of prob-
lems because of their representation capacity [19–21].
These works are partly motivated by the belief that
modern systems are complicated and existing linear or
linear-subspace models are no longer capable of repre-
senting the systems we seek to model.

In this paper, we explore the second challenge—that
of posing an optimization problem, or, more generally,
specifying a goal whose minimum will yield a sys-
tem with predictive power. We argue that this problem
is equally, if not more, important than appropriately
parameterizing a model space. We support this asser-
tion by showing that many currently used optimiza-
tion objective specifications fail to recover models even
when the correct model class is known. Specifically,
these specifications cause system identification tech-
niques to break down in the presence of sparse mea-
surements and/or noisy data.

We advocate a probabilistic approach to modeling
system dynamics that explicitly provides for the rep-
resentation and incorporation of three uncertainties:
parameter uncertainty, model uncertainty, and mea-
surement uncertainty. This probabilistic setting, given
in Sect. 3, poses the problem as a hidden Markov
model and is well known in the estimation and filter-
ing literature across disciplines [22–24]. Despite being
well known, this setting has not been thoroughly com-
pared to predominant system identification approaches
in the context of model learning rather than filter-
ing/smoothing.

The probabilistic learning formulation uses proba-
bilistic first principles to produce a rigorously, rather
than heuristically, defined objective function that can
either be minimized or solved using Bayesian machin-
ery. The Bayesian framework described in this paper
allows us to derive andoptimize learning objectives that
can be used for the identification of general continuous-
time dynamical systems. It turns out that these objec-
tives are also consistent with existing least squares sys-
tem ID objectives under additional assumptions. As

such, they provide a fresh viewpoint on a large class
of system ID formulations.

The solution to this Bayesian formulation is a pos-
terior distribution of the model parameters given the
observed data. As a result, predictions and forecast-
ing become probabilistic—weighting future outcomes
by their relative probabilities. This posterior distribu-
tion must be computed using computational inference
approaches such asMarkov ChainMonte Carlo or vari-
ational inference. Given a posterior distribution, goal-
oriented estimators can be extracted based on a spec-
ified loss and risk metric [25]. For instance, it is well
known that the posterior mean is the optimal estima-
tor for Bayes risk with squared loss, and the posterior
median is optimal for L1 loss.

1.1 The challenge and significance of optimal
uncertainty management

The two main challenges in optimally managing the
uncertainty in a problem revolve around specifying
prior knowledge in an accurate way, and managing the
computational expense of the algorithm. The first chal-
lenge requires converting prior information into prob-
ability distributions on the uncertain parameters, pro-
cess noise, andmeasurement data. Following this spec-
ification, the rules of probability inform how data are
sequentially assimilated. The second challenge arises
due to the nonlinearity, and therefore non-Gaussianity,
of inference in systems where both parameters, states,
and state transitions are uncertain.

One way to simplify these challenges is to ignore
certain sources of uncertainty; in Sect. 4, we show that
common least squares system ID approaches take this
path. However, such assumptions cause the procedures
to break down under sparse and noisy data, as we show
in Sect. 6. Indeed, a full accounting and management
of uncertainty are necessary to achieve reliability under
difficult data settings.

Accounting for all these sources of uncertainty
results in an increased computational expense associ-
ated with characterizing a non-Gaussian posterior dis-
tribution. When accounting for each source of uncer-
tainty, the likelihood becomes a function not only of
the parameters but also of the time series of the states
of the system, drastically increasing the dimensionality
of our problem. To overcome this challenge, we reduce
the dimension of the likelihood to the dimension of
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Optimal management of parameter, model, and measurement uncertainty 243

the parameter vector by integrating out the states from
the likelihood. This integration in and of itself can be
computationally expensive, but wemitigate this cost by
using a recursive solution powered by Kalman filtering
[22].

1.2 Contributions

To this end, our contributions involve proving that sev-
eral existing and popular approaches for system iden-
tification, sparse identification of nonlinear dynam-
ics (SINDy) [26] and dynamic mode decomposition
(DMD) [15], are realizations of the probabilistic frame-
work under some limiting assumptions (they assume
no measurement uncertainty). We choose these two
approaches because they are representative of many
(nonlinear) least squares type approaches that are
used. We then empirically demonstrate that we yield
improved predictions compared to these approaches on
wide varying problems. Concretely, our contributions
are the following:

1. A complexity analysis of the unscented Kalman
filter MCMC (UKF-MCMC) algorithm developed
in [27], which enables an approximate marginal
Markov Chain Monte Carlo algorithm to sample
from the marginal posterior of the model parame-
ters;

2. Theorems 4 and 5 proving that DMD and SINDy
can be viewed as specific cases of the presented
probabilistic approach with additional assumptions
of zero measurement noise; and

3. A wide ranging set of numerical simulation results
demonstrating the robustness and improved predic-
tion quality of our approach in all cases, including
sparse and noisy data.

The UKF-MCMC approach mentioned in the first
contribution refers to a computational algorithm that
targets the marginal posterior distribution of the model
parameters to avoid performing inference over the
joint parameter-state space. It can be viewed as an
approximation of the marginal likelihood that is tradi-
tionally very difficult to compute for dynamical sys-
tems [28]. The UKF-MCMC algorithm is one of a
number of algorithms that have been recently devel-
oped that draw on Gaussian-based filtering to approx-
imate the marginal likelihood [29–31]. These algo-
rithms trade off the approximation quality for some

additional computational efficiency compared with the
seminal particle-marginal approach of Andrieu [32],
which is able to reconstruct the exact posterior. Never-
theless, our results indicate that the posterior approx-
imated by the UKF-MCMC algorithm is still able to
reconstruct systems with good accuracy.

We apply the UKF-MCMC algorithm to the hierar-
chical Bayesian setting where we explicitly learn the
process and measurement covariance of the dynamical
system. Furthermore, we use standardized uninforma-
tive priors for the model parameters and standard half-
normal priors for the unknown covariances [33]. As
a result, our algorithm requires no additional parame-
ters, besides number of MCMC samples, compared to
competing single-point estimators (DMD and SINDy).
Furthermore, we provide a computational complexity
analysis showing that the expense of our approach com-
pared to these existing approaches grows linearly with
the number of data points. However, our accuracy gains
are shown to sufficiently offset this expense.

The second contribution aims to uncover, or at least
interpret, some of the underlying assumptions that
have led to observed poor performance of the meth-
ods to which we compare. Many data-driven methods
claim a certain degree of objectivity (as compared to,
for instance, the Bayesian approach we propose here)
because they avoid placing strong assumptions (priors)
on the system model that may influence the method’s
estimate. In reality, however, “analyses that have the
appearance of objectivity virtually always contain hid-
den, and often quite extreme, subjective assumptions”
[25]. It will be shown that the estimators DMD and
SINDy hold the hidden assumption that uncertainty
enters only through process noise and that the mea-
surements are noiseless.Conversely, techniques such as
parameter optimization of deterministic ODEs account
only for noise in the measurements and not in the pro-
cess. The Bayesian estimator presented here will be
shown tooutperform these commonapproaches as soon
as their underlying assumptions are violated, even in
the modifications of these algorithms that incorporate
denoising [34,35].

1.3 Paper structure

The rest of this paper is structured as follows. In
Sect. 2, we explain the central problem this paper hopes
to address: how common least squares-based system
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ID approaches create objective functions with certain
undesirable features. We illustrate this problem by pro-
viding the contours of two common objective func-
tions for a simple two-dimensional problem and show
how the Bayesian approach incorporates the advan-
tageous features of both without including the prob-
lematic features. In Sect. 3, we detail the probabilis-
tic framework of a system ID problem, including the
problem setup and primary goals. Then, in Sect. 4, we
provide an analysis of four common approaches to sys-
tem ID with a focus on providing theory that unveils
the underlying assumptions used by these approaches.
Section 5 outlines the algorithms used to implement
the Bayesian approach and provides a comparison of
their computational complexity to that of DMD and
sparse regression. Finally, Sect. 6 applies the Bayesian
algorithm to five different dynamical systems including
linear, nonlinear, chaotic, and PDE systems. Compar-
isons of the Bayesian algorithm to DMD and SINDy
are given, and it is shown that not only is the Bayesian
approach just as effective for systems for which these
common approaches display exemplary performance,
but the Bayesian algorithm also remains robust in cer-
tain regimes where DMD and SINDy fail.

2 Representative challenges in common least
squares approaches to system ID

In this section, we highlight the geometry of the objec-
tive functions of several representative optimization
formulations for system identification that we explore
in this paper. Specifically, we consider three objec-
tives: one that considers measurement uncertainty but
no process/model uncertainty; one that assumes pro-
cess uncertainty but no measurement uncertainty; and
finally our proposed approach that considers both
process and measurement uncertainty. The first two
approaches are the most commonly used, but we show
that they suffer from multiple minima and poor data
sensitivity, respectively. Furthermore, while variations
of these approaches are used on complex systems, we
highlight their limitations in an extremely simple set-
ting of recovering a linear pendulum.

To motivate the results, consider a simple setting
where the true model is a linear oscillator with a fre-
quency of 2.00rad/s. Suppose that the learning objec-
tive is to identify the frequency. One might intuitively
believe that the following least squares objective (in

the time-domain) would appropriately penalize incor-
rect frequencies ω

J (ω, T ) =
∫ T

0

(
cos(2.00t) − cos(ωt)

)2
dt, (1)

where J (ω, T ) measures the “error” of estimating
someparameterω.Anoptimization schemewould then
try to find the parameter ω to minimize J . This objec-
tive is not derived from any arguments, rather it is intu-
itively specified and here we attempt to see whether
this specification makes sense.1

Prior to considering the full system identification,
we consider a property of the least squares objective.
We compare the cost of two parameters ω = 2.01 rad/s
and ω = 4.00 rad/s at two different times T = 10
and T = 1000. In the case where we obtain noise-
free data for 10 s, we obtain J (2.01, 10) = 0.02 and
J (4.00, 10) = 9.63—as we desire, the cost of esti-
mating ω = 2.01rad/s is more than 100 times lower
than estimating ω = 4.00rad/s. However, suppose
that we obtain data for 100 times longer. Then, we
obtain J (2.01, 1000) = 1053.96 and J (4.00, 1000) =
999.58—the relative difference between the two objec-
tives has shrunk tremendously.

In this example, even small perturbations from the
true parameters of a system yield large errors given
enough time, and, in this case, greatly reduce the rel-
ative benefit of ω = 2.01 over ω = 4.00. In simpler
terms, this example demonstrates that as the number of
data points increases, the relative difference between
ω = 2.01 and ω = 4.00 decays! The practical implica-
tion is that optimization formulations may have signif-
icantly more difficulty in distinguishing between cor-
rect and incorrect parameters. The issue here is that the
least squares objective does not seem to behave as intu-
ition would expect, nor does it match the behavior we
are aiming to achieve. Specifically, we seek an objec-
tive function that exaggerates the difference between
parameterswith small errors and thosewith large errors
as more data are obtained.

1 For this linear problem, it is more appropriate to con-
sider frequency-domain system ID, which would not encounter
the problems described here. However, these types of time-
domain system ID procedures using least squares-based regres-
sion/machine learning approaches are increasingly being used
for complex nonlinear systems [36–38], and we seek to show
that they can be limited in an extremely simple setting.
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Optimal management of parameter, model, and measurement uncertainty 245

In this paper, we show that an approach that intro-
duces (and then seeks to reduce) the uncertainty in
parameters, models, and measurements leads to objec-
tive functions that are far better behaved. To this end,we
have found that existing approaches can be character-
ized by their consideration of three sources of uncer-
tainty: model structure, model parameters, and mea-
surement. The presence of model structure uncertainty
refers to our lack of knowledge of the perfect underly-
ing model structure. Typically, this uncertainty arises
from two sources: (1) the model representation is not
sufficiently expressive and/or (2) the numerical inte-
gration of the model introduces deviations from the
true system. Parameter uncertainty refers to lack of
knowledge in the parameters that describe the chosen
model structure to learn. Finally, measurement uncer-
tainty refers to the fact that sensors that collect data
on the system are not free of error—we cannot defini-
tively say that the state of the system is identical to the
measurements. Instead, we have some uncertainty as to
what the state of the system truly is when we receive a
measurement. The noisier the data, the more measure-
ment uncertainty that is present.

While parameter and measurement noise can be
readily modeled, representing model structure uncer-
tainty is highly nontrivial. In this paper, we use the sim-
ple characterization of including process noise. While
the process noise is not themodel error, it does encapsu-
late the fact that the predicted motion is incorrect [39].
In fact, we empirically show that it should be included
even when the model class spanned by the parameters
encapsulates the truth to yield more robust results.

More concretely, we consider identification prob-
lems that arise from solving the following three opti-
mization objectives.

θ∗ = argmin
θ

n∑
i=1

‖(yi − x(ti ))‖22 s.t.
dx

dt
= f (t, x; θ)

(2)

θ∗ = argmin
θ

n∑
i=2

‖yi − Ψ (yi−1; θ)‖22 (3)

θ∗ = argmax
θ

log(p(y1, . . . , yn | θ)) (4)

where θ are model parameters, f are continuous
dynamics representing the time derivatives of a prob-
lem, andΨ are discrete propagators. The first objective
[Eq. (2)] assumes deterministic dynamics and performs

(a) (b) (c)

Fig. 1 Comparison of three optimization objectives for the iden-
tification of a linear pendulum. The rows correspond to the objec-
tive functions obtained after 20, 40, and 80 data points are taken
at 0.1 second intervals from top to bottom. White crosses indi-
cate true parameters. Neglecting process noise in the left column
results in many local minima. Neglecting measurement noise in
the middle column results in an objective insensitive to the num-
ber of data. The Bayesian approach in the right column results
in the ideal scenario where the objective becomes steeper in the
direction of the minimum as the amount of data increases

least squares regression to match the trajectory of a dif-
ferential equation to the data. The least squares objec-
tive here implicitly accounts for measurement noise,
and is widely used in the literature [40,41]. The sec-
ond objective [Eq. (3)] assumes there is no measure-
ment noise, only process noise/model uncertainty, and
instead builds a propagator between observations. This
objective is representative of DMD [15] and similar
least squares approaches [42,43]. The final objective
[Eq. (4)] is the log marginal likelihood arising from
Theorem 1 that we advocate for in this paper. Note
that standard L2 and sparsity-enhancing L1 regular-
izations/priors can also be included to each of these
objectives, but they do not change the qualitative con-
clusions.

Figure 1 shows these objective functions for the case
of learning a continuous-time linear pendulum

[
ẋ1
ẋ2

]
=

[
0 θ1
θ2 0

] [
x1
x2

]
, (5)
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where the true parameters are θ1 = 1 and θ2 = −g/L .

Here, g is the acceleration due to gravity and L is the
pendulum length.Data are obtained in 0.1 second incre-
ments with noise standard deviation of 0.1. Each col-
umn corresponds to a different objective. The first col-
umn corresponds to the objective of Eq. (2), the second
corresponds to Eq. (3), and the third to Eq. (4).

The rows of this figure correspond to 20, 40, and 80
data points collected in 0.1 second increments, respec-
tively. In the left panel, we see that the assumption of a
deterministic system (no process noise) results in many
local minima, each of which represents a system that
matches the data closely at some points and at other
points may be completely opposite. In the middle col-
umn, we see that excluding the measurement noise has
smoothed over certain features of the deterministic sys-
tem and the objective becomes insensitive to the num-
ber of data points. This panel corresponds to the shape
of the objective used by DMD. In this case, finding the
minimum of the objective is fast, but the reconstructed
systemmay lack some of the key features of the true tra-
jectory and is not tremendously affected by increasing
data. Lastly, the third column represents the objective
arising from our probabilistic approach that considers
all types of uncertainty. Only in this approach, do we
see that increasing data have a beneficial effect on the
objective function. Multiple local minima do not exist,
the characteristic shape seen in the left column remains,
and the objective becomes steeper in the region of the
minimum.

3 General problem setting

In this section, we describe the probabilistic framework
for system identification, the problem statement, and a
description of our high-level solution approach.

3.1 Notation

Let R denote the set of reals and Z+ denote the set of
positive integers. Let us define the norm of a vector
as ‖a‖2C = aTC−1a. Let (Ω,F ,P) denote a proba-
bility space, d ∈ Z+ denote the dimension of a state
space,m ∈ Z+ denote the dimension of an observation
space, p ∈ Z+ denote the dimension of a parameter
space, n ∈ Z+ denote the number of observations, and
k ∈ Z+ denote a time index corresponding to a time

tk ≥ 0. Sequential time indices will typically occur
with a constant interval Δ so that tk = tk−1 + Δ.
We model the state Xk ∈ R

d and the measurement
Yk ∈ R

m , each at time tk , as random variables. The
lowercase form of these random variables, xk and yk ,
is used to denote a realization of the random variable.
A sequence of random variables is denoted with calli-
graphic font and a subscript corresponding to the time
index of the final instance: Yk = Y1,Y2, . . . ,Yk and
Xk = X0, X1, . . . Xk .

3.2 Probabilistic formulation

In this section, we describe the probabilistic inference
problem. We consider discrete-time dynamical sys-
tems for the evolution of the unobserved system state
Xk ∈ R

d . The system is observed through a noisy mea-
surement operator providing us data yk ∈ R

m . These
data can be viewed as realizations of another observed
stochastic process Yk that is dependent on the hidden
states.

Thedynamics andmeasurement operators are uncer-
tain and the parameters θ ∈ R

p for p ∈ Z+ define a
search space over which we will seek to learn the sys-
tem. We partition the parameters θ = (θΨ , θh, θΣ, θΓ )

into different aspects of the problem including the
dynamics model parameters θΨ , observation model
parameters θh , process noise parameters θΣ , and obser-
vation noise parameters θΓ . Together these states,
observations, and parameters are related through a hid-
den Markov model describing a discrete-time stochas-
tic process [22]

Xk = Ψ (Xk−1, θΨ ) + ξk; ξk ∼ N (0, Σ(θΣ))

Yk = h(Xk, θh) + ηk; ηk ∼ N (0, Γ (θΓ )),
(6)

for k = 1, . . . , n where Ψ : R
d × R

p → R
d

is the dynamics operator, N denotes the normal
distribution, ξk is the process noise with uncertain
covariance Σ(θΣ), h : R

d × R
p → R

m is the
observation/measurement operator, Yk is the predic-
tive stochastic process for the observable, and ηk is
the observation noisewith uncertain covarianceΓ (θΓ ).

Finally, we have an additional source of uncertainty
corresponding to the initial condition of the states X0.

A visual representation, in the form of a Bayesian net-
work of this model, is provided in Fig. 2.

Examples of Ψ could include physics-inspired PDE
operators [42], empirical linear models (a matrix), or
nonlinearmodels such as neural networks [44–46]. The
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Fig. 2 Bayesian network representation of the system identifi-
cation problem. The data are realizations of the observed process
Yk

observation operator h is typically some known sensor
model that may or may not have uncertain calibration
parameters θh .We include the parameters for the obser-
vation model to maintain generality.

System (6) implicitly defines several probability dis-
tributions that completely describe our state of knowl-
edge. The first distribution reflects theMarkovian prop-
agation dynamics

p(Xk | Xk−1, θΨ , θΣ)

=
exp

(
− 1

2‖Xk − Ψ (Xk−1, θΨ )‖2Σ(θΣ)

)
√
2π

d |Σ(θΣ)| 12
(7)

where the norm inside the exponential represents the
misfit, or model error, of the dynamics under a fixed set
of parameters.

The next distribution reflects the noisymeasurement
models

p(Yk | Xk, θh, θΓ ) =
exp

(
− 1

2‖Yk − h(Xk, θh)‖2Γ (θΓ )

)
√
2π

m |Γ (θΓ )| 12
(8)

where the norm inside the exponential represents the
residual between the states and the observed measure-
ments. Together, along with a prior, these distributions
will enable us to concretely form the learning problem,
which we establish in the next section.

3.3 Goals

In this section, we describe our two objectives: system
identification (learning) and prediction/forecasting.

Our learning objective is to determine a dynamical
model Ψ . Specifically, this objective requires repre-
senting our knowledge about the parameters θ (or θΨ )
after data are obtained. This knowledge is represented
via a conditional distribution over θ given the observed
data. This distribution is given by Bayes’ rule

p(θ | Yn) = p(θ)
L (θ;Yn)

p(Yn)
, where Yn = (y1, . . . , yn) ,

(9)

where the prior is denoted by p(θ) and the marginal
likelihood is a function of the unknown parameter

L (θ;Yn) ≡ p(Y1 = y1, . . . ,Yn = yn | θ). (10)

This conditional/posterior distribution captures all the
relevant information about our parameters contained
in the data. It will be useful to leverage the sequen-
tial/Markovian nature of the process to factorize this
likelihood as

L (θ;Yn) = p(Y1 = y1 | θ)

n∏
k=2

p (Yk = yk | θ,Yk−1)

= L1(θ;Y1)

n∏
k=2

Lk (θ;Yk) (11)

where we have set L1(θ;Y1) ≡ p(Y1 = y1 | θ) and
Lk(θ;Yk) ≡ p(Yk = yk | θ,Yk−1) for k = 2, . . . , n.

The challenge is computing the marginal likelihood
when the states are also uncertain due to process noise.
When both parameters and states are uncertain the joint
posterior becomes

p(θ,Xn |Yn) = p(θ)
L (θ;Xn,Yn)

p(Yn)
, (12)

where L (θ;Xn,Yn) is the joint likelihood. Similar
to the marginal likelihood, the joint likelihood is once
again a function of θ , but is now defined as

L (θ;Xn,Yn) ≡ p(Yn|Xn, θ)p(Xn|θ). (13)

Using Eqs. 7 and 8, the joint likelihood becomes

L (θ;Xn,Yn) =
n∏

k=1

⎛
⎝ exp

(
− 1

2‖Yk − h(Xk , θh)‖2Γ (θΓ )

)
√
2π

m |Γ (θΓ )| 12

⎞
⎠

×
⎛
⎝ exp

(
− 1

2‖Xk − Ψ (Xk−1, θΨ )‖2Σ(θΣ )

)
√
2π

d |Σ(θΣ)| 12

⎞
⎠ .

(14)
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We now see that our target marginal likelihood (11)
is related to this joint likelihood through a marginaliza-
tion procedure (integration)

L (θ;Yn) =
∫

L (θ;Xn,Yn)dXn . (15)

Evaluating an integral such as this is in general very
computationally expensive, but in the following sec-
tion, a recursive method of evaluating this integral will
be given that significantly reduces the cost.

Our second goal is to predict, or forecast, the system
state at some future time tk . This prediction could either
be the full posterior predictive distribution p(Xk | Yn)

or some “best estimate” X∗
k that can be derived from

the posterior to satisfy some optimality conditions [25].
Furthermore, these two goals (system identification
and prediction) are related in that the prediction is
obtained by averaging over all possible system param-
eters, weighted according to the posterior distribution,

p(Xk | Yn) =
∫

p(Xk | θ)p(θ | Yn)dθ. (16)

3.4 Marginal likelihood computation

In this section, we review the formulas for comput-
ing the marginal likelihood used in the target distribu-
tion (9). We first present the general case [22] provided
by the result of Theorem 1.

Theorem 1 (Marginal likelihood (Th. 12.1 [22])) Let
Yk ≡ {yi ; i ≤ k} denote the set of all observations up
to time k. Let the initial condition be uncertain with dis-
tribution p(X0 | θ). Then, the marginal likelihood (11)
is defined recursively in three stages: prediction

p(Xk+1 | θ,Yk) =
∫ exp

(
− 1

2‖Xk − Ψ (Xk−1, θΨ )‖2Σ(θΣ )

)
√
2π

d |Σ(θΣ)| 12
× p(Xk | θ,Yk)dXk (17)

update,

p (Xk+1 | θ,Yk+1) = p(Xk+1 | θ,Yk)

×
exp

(
− 1

2‖Yk − h(Xk, θh)‖2Γ (θΓ )

)
√
2π

m |Γ (θΓ )| 12 p(Yk+1 | θ,Yk)

(18)

and marginalization,

Lk+1(θ | Yk+1) =
∫

p(Xk+1 | θ,Yk )

×
exp

(
− 1

2 ‖Yk − h(Xk , θh)‖2
Γ (θΓ )

)
√
2π

m |Γ (θΓ )| 12
dXk+1

(19)

for k = 1, 2, . . . .

This theorem provides a recursive algorithm for eval-
uating the marginal likelihood. This recursion requires
not only maintaining a standard Bayesian filter for the
prediction and update steps, but also keeping track of
the marginalized distribution after every observation.
Extensions to situations where data are not obtained at
every time step is trivial—for times when no data are
obtained, the update step is skipped.

4 Analysis of common assumptions and existing
approaches

In this section, we specialize the marginal likelihood
from the general case to several special cases. The
special cases reviewed here are (1) zero process noise
(model error is ignored) and (2) noiseless, invertible
measurements (measurement error is ignored).We then
provide the additional assumptions that are necessary
to arrive at the DMD and SINDy algorithms. Figure 3
is a flowchart showing how we begin with the joint log
likelihood and arrive at a number of special cases of
the log likelihood.

4.1 Zero process noise

Objective (2) uses a deterministic model, discard-
ing process noise. In this setting, the distribution (7)
reduces to a Dirac delta function

p(Xk | Xk−1, θΨ , θΣ) = δXk (Ψ (Xk−1, θΨ )). (20)

The assumption of zero process noise leads to the
marginal likelihood given in Theorem 2.

Theorem 2 (Marginal likelihood—zeroprocess noise)
Let the dynamics model be deterministic. Then, the
marginal likelihood (11) is defined recursively as

Lk(θ;Yk) =
exp

(
− 1

2‖yk − h(Ψ k(x0, θΨ ), θh)‖2Γ (θΓ )

)
√
2π

m |Γ (θΓ )| 12
(21)
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Fig. 3 Flowchart of the logic in Sects. 3.4 and 4

for k = 1, . . . , n where Ψ k denotes k applications of
the dynamics model. Moreover, the log marginal like-
lihood becomes

logL (θ;Yn) =
n∑

k=1

(
−1

2
‖yk − h(Ψ k(x0, θΨ ), θh)‖2Γ (θΓ )

)

− nm

2
log 2π − n

2
log|Γ (θΓ )|. (22)

Proof The proof follows from the fact that a deter-
ministic system must follow a fixed trajectory defined
entirely by the parameters. In other words, we have
p(Xn | θΨ ,Yn) = p(Xn | θΨ ) =
δΨ (x0,θΨ ),...,Ψ n(x0,θΨ )(Xn). As a result, the second term
of the joint likelihood 14 drops out, and we are left with

L (θ;Xn,Yn)=
n∏

k=1

exp
(
− 1

2‖yk − h(xk, θh)‖2Γ (θΓ )

)
√
2π

m |Γ (θΓ )| 12
.

Because the dynamics are deterministic, we have xk =
Ψ k(x0, θΨ ). Thus, the likelihood no longer depends on
the states other than the known initial state, and what
remains is the marginal likelihood as stated

L (θ;Yn) =
n∏

k=1

exp
(
− 1

2‖yk − h(Ψ k(x0, θΨ ), θh)‖2Γ (θΓ )

)
√
2π

m |Γ (θΓ )| 12
.

Taking the log of this expression completes the proof.
��

4.2 Noiseless and invertible measurements

In this section, we consider the ramifications on the
posterior of assuming no measurement noise. In the
next section, we will show that several least squares
optimization approaches correspond to this case.

Consider an invertible observation operator so that
the states are uniquely determined Xk = h−1(Yk).
Using this assumption in System (6) leads to a Marko-
vian system for the system observables

Yk+1 = h
(
Ψ

(
h−1(Yk), θΨ

)
+ ξk, θh

)
(23)

for k = 1, . . . , n − 1 where ξk ∼ N (0,Σ(θΣ)).

This assumption yields the marginal likelihood
given in Theorem 3.

Theorem 3 (Marginal likelihood—noiseless, invert-
ible observations) Let h be an invertible operator and
themeasurements be noiseless. Then, themarginal like-
lihood (11) is defined recursively as

Lk(θ;Yk) = |∇h−1(yk)|
exp

(
− 1

2‖h−1(yk) − Ψ
(
h−1 (yk−1) , θΨ

)‖2Σ(θΣ )

)
√
2π

d |Σ(θΣ)| 12
(24)

for k = 2, . . . , n and

logL1(θ;Y1) = log
∫

exp
(
‖h−1(y1) − Ψ (X0; θΨ )‖2Σ(θΣ )

)

p(X0 | θ)dX0 − d

2
log 2π − 1

2
log|Σ(θΣ)|.

(25)

Together, the log marginal likelihood becomes

logL (θ;Yn) =
n∑

k=2

(
log|∇h−1(yk)|

− 1

2
‖h−1(yk) − Ψ

(
h−1 (yk−1) , θΨ

)‖2Σ(θΣ )

)

− nd

2
log 2π − n

2
log|Σ(θΣ)| + logL1(θ;Y1).

(26)
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Proof Noiseless observations yk = h(xk, θh) imply
that ‖Yk −h(Xk, θh)‖2Γ (θΓ ) = 0 such that the first term
of the joint likelihood (14) drops out. Second,we notice
that we can rewrite the second term in terms ofYk rather
than Xk by using the change of variables formula

L (θ;Yn) =
n∏

k=1

|∇h−1(Yk)|

exp
(
− 1

2‖h−1(Yk) − Ψ (h−1(Yk−1), θΨ )‖2Σ(θΣ )

)
√
2π

d |Σ(θΣ)| 12
.

The likelihood no longer depends on the states and thus
the given result is the marginal likelihood. ��

As we intuitively expected, there is no marginal-
ization over states under this assumption because the
learning problem effectively “resets” after every data
point. After the reset, the states are at their true value,
and optimization progresses to ensure that the resid-
ual of propagation between true values is small. This
is exactly the same methodology that inspires the least
squares regression-based approaches such asDMDand
SINDy. In fact, we will show that special assumptions
on h and Ψ recover these least squares approaches.

Remark 1 (Data on initial condition) If the initial
condition is treated as beginning when the data are
obtained, then the log likelihood for the first data point
becomes independent of the parameters and we can set
it to an arbitrary constant.

4.3 Dynamic mode decomposition (DMD)

Dynamic mode decomposition (DMD) is a data-driven
method for system identification that is used to iden-
tify the “dynamic modes” of a dynamical system [15].
These modes reveal characteristics such as unstable
growth modes, resonance, and spectral properties [47].
DMD is favorable when the system at hand is high
dimensional but has some hidden low-dimensional
structure, as is the case in many fluids problems. DMD
first organizes a series of measurements at regular time
intervals into two matrices

Y = [
y1 y2 . . . yn−1

] ; Y ′ = [
y2 y3 . . . yn

]
, (27)

and then seeks a linear operator A which maps the
observables from one time step to the next, i.e., Y ′ =

AY . To find A, one simply minimizes the Frobenius
norm of AY − Y ′ by solving the least squares problem

A = argmin
Ã

n∑
k=2

‖yk − Ãyk−1‖2. (28)

The solution is given by A = Y ′Y †, where † denotes
the pseudo-inverse.

The method given above may at first appear only
applicable to linear systems, but [48] showed that in
the nonlinear case, the approximated operator A and its
corresponding modes are approximations to the linear
but infinite-dimensional Koopman operator and Koop-
man modes, respectively, thus revealing its applicabil-
ity to nonlinear systems.

Next, we show the least squares procedure for DMD
canalsobederived directly from thegeneral probabilis-
tic system (6) under certain assumptions.

Theorem 4 (DMD as a maximum likelihood of sys-
tem (6)) Assume a linear model Ψ (Xk, θΨ ) = θΨ Xk;
identity observation operator h = I ; noiseless mea-
surements Γ (θΓ ) = 0; and identity process noise
Σ(θΣ) = I. Then, the maximum marginal likelihood
estimator corresponding to System (6) is equivalent to
the least squares objective of the DMD problem (28).

Proof This result uses a straightforward application of
Theorem 3. Without loss of generality, we use the fact
that the firstmeasurement is of the initial condition, and
therefore we can ignore L1. Here, we have an iden-
tity observation operator, and therefore the inverse and
Jacobian are also the identity. The dynamics are lin-
ear and unknown so we can write A ≡ θΨ . With these
substitutions, the logmarginal likelihood (26) becomes

logL (θ;Yn) =
n∑

k=2

(
log|Id | − 1

2
‖yk − Ayk−1‖2Id

)

− nd

2
log 2π − n

2
log|Id |. (29)

After evaluating log|Id | = 0, we arrive at our stated
result

logL (θ;Yn) = −
n∑

k=2

1

2
‖yk − Ayk−1‖2 − nd

2
log 2π.

(30)

Clearly, the maximizer of this function is equivalent to
the minimizer of (28). ��
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While the invertible measurement operator is not a
restrictive assumption because all DMD cares about is
mapping observables and not underlying states, The-
orem 4 shows why DMD may not be appropriate for
cases where the observations are noisy. This fact has
been recognized in the literature and several proce-
dures for rectifying this issue have been proposed.
For instance, [34] showed that total least squares is
a more appropriate algorithm to identify A when mea-
surement noise is present, a method known as total
DMD (TDMD). For a full analysis of the total least
squares problem, see [49,50].Wewill empirically com-
pare TDMD to our approach in Sect. 6, where we see
that it also performs worse than the posterior predic-
tive mean. Future work will attempt to determine the
assumptions that TDMD makes in the context of Sys-
tem (6).

In [51], another connection between the Bayesian
approach to DMDwas developed that infers the Koop-
man modes and eigenfunctions of the Koopman oper-
ator directly, rather than learning the dynamical oper-
ator itself. That work showed that when the measure-
ments are noiseless, the maximum likelihood estimate
of their Bayesian model, TDMD, and DMD all pro-
vide the same estimate. In contrast, here we have pro-
vided our result in terms of the underlying hidden state
dynamics rather than explicitly assuming observation
dynamics.

One benefit of the analysis in our context is that
our use of an underlying state-space model makes the
framework valid even when the observations cannot
be written using a Markovian (zero-lag) model as in
Eq. (23), which was required for the approach devel-
oped in [51]. In fact, this result can be interpreted to
indicate that zero-lag DMD is most effective if the
observation operator is invertible.

4.4 Regularized regression for nonlinear models

Least squares optimization can also be used for iden-
tifying nonlinear systems by searching in a linear sub-
space. In these cases, it is often advantageous to add
regularization to seek parsimonious solutions. One
such approach that uses a sparsity enhancing regular-
ization is the method of sparse regression or sparse
identification of nonlinear dynamics (SINDy) [26].

These approaches organize a library of candidate
functions (linear and nonlinear) into a matrix. They

then aim to approximate the time derivative, or vector
field, in the span of this library. For instance,

ẋ = f (x) ≈ [
1 x x2 . . . x p

]
⎡
⎢⎢⎢⎣

θ0
θ1
...

θp

⎤
⎥⎥⎥⎦ . (31)

This example uses monomial candidate functions, but
any basis (wavelets, orthogonal polynomials, empirical
bases) can be used.

Suppose that the general dictionary of terms is given
by  : R

d → R
d so that the deterministic por-

tion of some continuous-time autonomous dynamics
can be written as a linear system with respect to the
parameters/coefficients of the functions in the dictio-
nary ẋ = (x)θΨ . If direct data were available on the
states and derivatives, onemight then try to solve a (reg-
ularized) linear least squares problem for the parame-
ters

θΨ = argmin
θ̃

n∑
k=1

‖ẋk − (xk)θ̃‖22 + λ‖θ̃‖, (32)

where λ is a regularization weight and the norm can
be chosen by the user. If the L1 norm is chosen, this
becomes a sparse regression problem.

Practical applications, however, do not have data
on the derivative of each state ẋi . As a result, vari-
ous numerical approximations can be made, and this is
the approach taken by the SINDy algorithm. Here, we
will consider one type of numerical approximation to
the derivative, but our analysis can be extended to oth-
ers. If a forward-difference approximation to the time
derivative is taken, then the SINDy objective function
is

θΨ = argmin
θ̃

n∑
k=2

∥∥∥∥ yk − yk−1

Δt
− (yk−1)θ̃

∥∥∥∥
2

2
+ λ‖θ̃‖1.

(33)

Notice that this approach requires direct observation of
the states. Next, we show that it is also equivalent to the
maximum a posteriori (MAP) of our target conditional
distribution under more strict assumptions.

Theorem 5 (SINDy as a maximum a posteriori esti-
mate of system (6)) Let (x) : R

d → R
d denote a

library of candidate functions for continuous-time drift
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dynamics. Let Ψ (x; θΨ ) denote the resulting discrete-
time operator that uses a forward-Euler integration
scheme

Ψ (X, θΨ ) = X + Δt(X)θΨ . (34)

Furthermore, assume an identity observation operator
h = I ; noiseless measurements Γ (θΓ ) = 0; iden-
tity process noise Σ(θΣ) = I ; and a Laplace prior

p(θΨ ) ∝ exp
(
−λ̃|θΨ |

)
. Then, the MAP estimate of

the conditional distribution given in Eq. (9) is equiv-
alent to the SINDy estimator obtained by minimiz-
ing (33).

Proof This proof is again a straightforward application
of Theorem 3. Recall that the data are taken on the
initial condition, and note that we have Yk = Xk . The
log marginal likelihood (26) is then

logL (θ;Yn) =
n∑

k=2

(
− 1

2
‖yk − (yk−1 + Δt(yk−1)θΨ )‖2Id

+ log|Id |
)

− nd

2
log 2π − n

2
log|Id | (35)

= −Δt

2

n∑
k=2

∥∥∥∥ yk − yk−1

Δt
− (yk−1)θΨ

∥∥∥∥
2

2

− nd

2
log 2π. (36)

Then, we can drop the parameter-independent term and
add the log prior to obtain a posterior that is propor-
tional to

log p(θ;Yn) ∝ −Δt

2

n∑
k=2

∥∥∥∥ yk − yk−1

Δt
− (yk−1)θΨ

∥∥∥∥
2

2

− λ̃|θΨ | (37)

= −Δt

2

( n∑
k=2

∥∥∥∥ yk − yk−1

Δt
− (yk−1)θΨ

∥∥∥∥
2

2

+ 2λ̃

Δt
|θΨ |

)
. (38)

Maximizing the posterior is equivalent to minimizing

the term in the parentheses. By setting λ ≡ 2λ̃
Δt , we see

that this is the exact form of the SINDy objective (33).��

5 Algorithm and computational complexity

In this section, we describe an approximate marginal
MCMCapproach that has recently been introduced and

analyzed in parallel by several different fields [27,29–
31]. This approach is fundamentally based on approxi-
mately evaluating the marginal likelihood described in
Theorem 1.

5.1 Algorithm

Theorem 1 provides a recursive approach to evalu-
ate the marginal likelihood that avoids computation
of a high-dimensional integral, but this theorem still
requires the evaluation of lower-dimensional integrals.
In the linear case, the solution to these recursive inte-
grals can be found using the Kalman filter; however, no
solution is available for general nonlinear systems.

When no closed-form solution exists for these inte-
grals, nonlinear filtering techniques can be introduced.
These can include ensemble Kalman filtering [52],
Gaussian filtering (including cubature Kalman filter
[53] and unscented Kalman filter [54]), and parti-
cle filtering [55]. Of these filters, only the particle
filter has been proven to enable an exact pseudo-
marginal MCMC scheme [56]. The other schemes
approximate the prediction, update, and marginaliza-
tion equations—yielding a (generally) biased estimate
of the posterior. Nevertheless, they are oftenmore com-
putationally tractable and have empirically shown good
performance.

These algorithms embed these filters within the
accept–reject step of Metropolis–Hastings MCMC
scheme, as shown in Algorithm 1. We slightly mod-
ify the UKF-MCMC scheme of [27] by using delayed-
rejection adaptive Metropolis MCMC [57] instead of
the standard Metropolis–Hastings MCMC. Specifi-
cally, the log posterior enters these schemes during the
computation of the likelihood portion of the posterior

α = min

(
1,

L̂ (θ∗;Yn)p(θ∗)
L̂ (θ(k−1);Yn)p(θ(k−1))

π(θ(k−1))

π(θ∗)

)
,

(39)

where π(θ) is the proposal distribution and L̂ (θ;Yn)

is the likelihood estimator. As we mentioned above, in
the linear case we use a Kalman filter to exactly evalu-
ate the marginal likelihood (L̂ (θ;Yn) ≡ L (θ;Yn)).
This algorithm is shown in Algorithm 2. In the
nonlinear case, we approximate each distribution to
be Gaussian and approximate the marginal posterior
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using an unscented Kalman filter (UKF) as shown
in Algorithm 3. Algorithms 2 and 3 are given in the
“Appendix”.

Algorithm 1 Approximate marginal MCMC for
Bayesian inference
Input: Prior distribution p(θ)

UKF-based likelihood estimator L̂ (θ;Yn)

Proposal distribution π(θ)

Initial sample θ(0)

Output: Samples from stationary distribution p(θ | Yn)

1: Compute ẑ(0) = L̂ (θ(0);Yn)

2: for k = 1 to N do
3: θ∗ ∼ π Sample from proposal
4: z∗ = L̂ (θ∗;Yn) Compute estimated likelihood
5: Compute acceptance probability

α = min

(
1,

z∗ p(θ∗)
z(k−1) p(θ(k−1))

π(θ(k−1))

π(θ∗)

)
(40)

6: Accept θ(k) = θ∗ and z(k) = z∗ with probability α; other-
wise θ(k) = θ(k−1) and z(k) = z(k−1)

7: end for

5.2 Computational complexity

We will show in Sect. 6 that this approach yields
more robust estimators than competing system ID
approaches by accounting for measurement noise;
however, this robustness will be at the cost of slightly
increased computational complexity. In this section,
we assess the cost of the algorithm both in the linear
case where the Kalman filter is used and the nonlinear
case where the UKF is used by counting the number of
floating-point operations (flops) required by each algo-
rithm.

For this analysis, addition, subtraction, multiplica-
tion, and division of two floating point numbers and
the logarithm of one floating point number all count as
one flop. The multiplication of an m × n matrix by an
n × p matrix then counts as mp(2n − 1) flops because
each of the mp entries of the product matrix requires
n multiplications and n − 1 additions.2 Similarly, the
multiplication of an m × n matrix by an n × 1 vector
requires n(2n−1) flops. Additionally, we approximate

2 We only consider the naive matrix-multiplication scheme, not
the asymptotically more optimal approaches such as Strassen’s
algorithm.

the cost of a Cholesky decomposition, matrix inver-
sion, and determinant performed on an n × n matrix
all to be n3/3 flops. Furthermore, the complexity of
these algorithms strongly depends on the complexity
of the dynamical andmeasurementmodels used, which
will vary from problem to problem. For the sake of
generality, we define the computational complexity of
the dynamical model Ψ and measurement model h to
be denoted as F and H , respectively. Clearly in the
linear case, these variables will not be needed as the
dynamical and measurement models are matrices, and
the number of flops can be calculated without loss of
generality. The number of flops for each algorithm will
be given in terms of the problem dimensions, so recall
the following notation: d the dimension of the state, m
the dimension of the measurements, p the number of
parameters, and n the total number of measurements
available.

Our analysis focuses entirely on the computation of
the marginal likelihood, which is the dominant cost of
theMCMCalgorithm. The complexity of the rest of the
algorithmwill depend on the complexity of theMCMC
algorithm and prior selected by the user, but is typically
orders of magnitude lower than the likelihood compu-
tation. In the following analysis, we provide results for
the Kalman filtering algorithm, the unscented Kalman
filtering algorithm, their prediction andupdate subcom-
ponents, DMD, and sparse regression. Table 1 shows
the number of different types of operations and flops
required by each algorithm where the computation of
the regularization term in sparse regression is excluded.
Note that although the mean and covariance of the
marginal likelihood are computed in the update step
of the Bayesian algorithms, the computation of the log
of this distribution is excluded from this step, and is
instead included only in the total. Also, the 18 flops
outside the parentheses in the UKF total count comes
from the formation of the weights, which is required
only once at the beginning of the algorithm.

In determining the number of flops used in DMD,
we counted the number of flops needed to solve the
normal equation A = Y ′Y T (YY T )−1 where Y,Y ′ ∈
R
m×n−1. Similarly, sparse regression was considered

to be the computation� = (T)−1T Ẋ , where ∈
R
n−1×p/m and Ẋ ∈ R

n−1×m . In practice, this compu-
tation is performed multiple times with an increasingly
small  matrix, but for this analysis, only one iteration
of the optimization procedure is considered. To exe-
cute TDMD, a singular value decomposition (SVD)
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Table 1 Tally of matrix and vector operations and flop count of
Algorithms2, 3,DMD, andSINDy.VEWandMEWare element-
wise vector andmatrix operations, respectively, such as addition,
subtraction, and element-wise multiplication and division. MV

is a matrix–vector or vector–vector multiplication, and MM is
matrix–matrix multiplication. Inv is a matrix inversion, Det a
determinant, and Chol a Cholesky decomposition

Algorithm VEW MEW MV MM Inv Det Chol Flop count

KF prediction 0 1 1 2 0 0 0 4d3 + d2 − d

KF update 2 2 3 6 1 0 0 2d3 + 1
3m

3 + 6d2m + 4dm2 + −d2 − m2 + 3dm − 1

KF total 4n 3n 6n 8n 2n n 0 n(6d3 + m3 + 6d2m + 4dm2 + m2 + 3dm − d + 3m + 8)

UKF prediction 4d 8 0 1 0 0 1 13
3 d

3 + 17d2 + 4d + 2 + (2d + 1)F

UKF update 4d + 2 14 1 5 1 0 1 1
3d

3 + 1
3m

3 + 6d2m + 8dm2 + 9d2 + 4m2 + 13dm+
2d + 6m + 2 + (2d + 1)H

UKF Total (8d + 4)n 22n 3n 6n 2n n 2n n

(
14
3 d

3 + m3 + 6d2m + 8dm2 + 26d2 + 6m2 + 13dm+

6d + 9m + 13 + (2d + 1)(F + H)

)
+ 18

DMD 0 0 0 3 1 0 0 7
3m

3 + 4m2n − 7m2

Sparse Regression 0 0 0 3 1 0 0 1
3

p3

m3 + 4 p2n
m2 − 5 p2

m2 − pn
m + 2pn + p

m − 3p

of the concatenated matrix
[
Y T Y ′T ] ∈ R

n−1×2m is
first performed, which has computational complexity
on the order of O(m2n + n2m + m3). The solution
of the total least squares problem is then given by
A = −V1V T

2 (V2V T
2 )−1. Let r be the rank of matrix[

Y T Y ′T ]
. Then, V1 ∈ R

m×2m−r is a matrix composed
of the first m rows of the last 2m − r right singular
vectors, and V2 ∈ R

m×2m−r is a matrix composed of
the last m rows of the last 2m − r right singular vec-
tors. The computational complexity of this least squares
problem is then 19

3 m
3 − 2m2r − 2m2. Since m = d in

the case of DMD the total computational complexity
is on the order O(d3 + d2n + n2d). Thus, the added
cost of including measurement noise is on the order
O(n2d).

The computational costs of the Bayesian algorithms
are on the order O(n(d3 +m3)). Typically, the dimen-
sionm of the observations is small, so this algorithm is
primarily limited by the dimension d of the state vector.
Furthermore, the dimension p of the parameter vector
only affects the evaluation of the prior, which is usu-
ally chosen so as to be easy to compute. Therefore, this
algorithm is most efficient for problems where the state
dimension is low and the parameter dimension is high,
such as in nonlinear regression problems.

6 Numerical experiments

In this section, we provide a set of empirical results that
demonstrate a lack of robustness among methods that
do not account for all three sources of uncertainty. We
then show that our proposed approach is able to per-
form well under a greater variety of experimental con-
ditions. The conditions of each experiment are designed
to highlight and exaggerate the specified limitation of
some specificmethods.Wewill show that inmanycases
only small changes to the setting, for instance a slightly
larger noise or slower sampling frequency, can yield
significant difference in learning with these existing
methods—demonstrating their lack of robustness.

Our evaluations of the methodology examine two
quantities: reconstruction errors and prediction/
forecasting errors. Reconstruction error compares how
well the learned parameter is able to match the tra-
jectory from which the data were generated. This
is essentially training error, and used more to ver-
ify that the algorithms are working properly. Predic-
tion/forecasting compares our estimate to some trajec-
tory that is not contained in the data. These trajectories
could be a continuation of the system into the future
from the last point at which data were taken, or it could
be starting the estimated dynamics at a different ini-
tial condition. This comparison is of greater interest
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because it tests the extrapolatory power of the learned
dynamics.

6.1 Evaluation and prediction

Whereas traditional system ID and ML approaches
define the problem through an optimization objective,
the Bayesian approach separates learning and decision
making. In effect, it provides a way of generating new
optimization objectives and interpreting existing ones.
Here, we briefly comment on the fact that this sep-
aration comes in the form of a two-step procedure:
(1) computing the posterior and (2) extracting a goal-
oriented estimator through the specification of a loss
function. For detailed discussion of these topics, we
refer the reader to [25].

First note that we have considered θ to contain
all uncertain parameters in the problem. For predic-
tion, however, it is standard to make predictions into
the future using deterministic models based on Ψ .
As a result, we can partition the parameters θ =
(θΨ , θh, θΣ, θΓ ) into those that correspond to the
dynamics, observations, process noise, and measure-
ment noise, respectively. Next, we define the posterior
predictive distribution of the states as an average over
all possible values of the dynamics parameters condi-
tioned on the observations

p(Xk | Yn) =
∫

p(Xk | θΨ )p(θΨ | Yn)dθΨ , (41)

where we will use a deterministic prediction that dis-
cards the process noise

p(Xk | θΨ ) = δΨ k (x0,θΨ )(Xk). (42)

This restriction is not explicitly necessary, but it is rep-
resentative of how learned models are used in practice.

Finally, we extract an estimator to use as the “point
estimate” from the posterior. In this paper, unless oth-
erwise specified, we use themean estimator, which cor-
responds to the optimal estimator for the squared loss
[25],

X avg
k = EθΨ |Yn [p(Xk | Yn)] . (43)

Additionally,we require a point estimate as a starting
point for our sampling. In MCMC sampling, it is good
practice to start the sampler at a high probability point
to reduce the convergence time. For this reason, we
select the MAP estimate of the parameter posterior

θmap = argmax
θ

p(θ |Yn). (44)

6.2 Algorithmic settings

To perform the following experiments, MATLAB
2019bwas used. For ourMCMCalgorithm,we selected
the delayed-rejection adaptive Metropolis (DRAM)
algorithm [57]. The tuning parameters of this algorithm
are n0 the number of samples to draw before begin-
ning the AM algorithm, and γ the scaling factor used
by DR to scale the second-tier proposal covariance. In
this paper, we used n0 = 200 and γ = 0.01 for each
experiment. Also throughout the algorithm, whenever
a covariance matrix was calculated, a nugget ε I was
added where ε = 10−10 to help ensure positive defi-
niteness. Furthermore, the algorithm requires selection
of a starting sample and initial proposal covariance; we
used the MAP point θθ-map as our initial sample θ(0),
and the inverse Hessian of the negative log posterior
evaluated at θθ-map to be the initial covariance of our
proposal distribution:

π0(θ) = N

(
θmap,

(
−∂2 log p(θmap; θ |Yn)

∂θ2

)−1
)

.

(45)

Both of these values were found using MATLAB’s
fminunc function. For nonlinear systems, we must
additionally select parameters α, κ , and β for the UKF.
In this paper, we followed a common choice of param-
eter selection where α = 10−3, κ = 0, and β = 1.

Unless otherwise specified, an improper uniform
prior is used for all dynamics model parameters θ ∈ θΨ

p(θ) = U (−∞,∞), (46)

and half-normal priors are specified on the variance
parameters θ ∈ θΣ and θ ∈ θΓ as suggested in [33]

p(θ) = half-N (0, 1). (47)

The codeused to implement theBayesian algorithms
can be found on the author’s GitHub https://github.
com/ngalioto/BayesID. To execute DMD, MATLAB’s
right matrix division operator “/” was used, which
returns the least squares solution. TDMD was per-
formed using a script taken from MATLAB file
exchange [58] that solves the total least squares prob-
lem. Lastly, SINDy was run using code from [26],
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which utilizes code from [35] to compute the total vari-
ation regularized derivatives.

6.3 Linear pendulum, linear model

In this section, we consider learning a linear model
under an identity observation operator h = I when the
truth model is also linear. We show that that the pro-
posed probabilistic approach is more robust to sparse
observations and measurement noise than the least
squares-based DMD and TDMD.

Consider the linear model (5) for which the exact
propagator is

xk = exp

([
0 1

− g
L 0

]
Δt

)
xk−1, x0 =

[
0.1

−0.5

]

(48)

where g = 9.81 is the acceleration due to gravity and
L = 1 is the length of the pendulum.

We are learning an unknown linear model A(θΨ )

and assume that the process noise and measurement
noise is also uncertain. Under this setting, System (6)
becomes

xk = A(θΨ )xk−1 + ξk, ξk ∼ N (0,Σ(θΣ))

yk = xk + ηk, ηk ∼ N (0, Γ (θΓ )),
(49)

for k = 1, . . . , n where

A(θΨ ) =
[
θ1 θ2
θ3 θ4

]
, Σ(θΣ) = θ5 I2×2, Γ (θΓ ) = θ6 I2×2.

(50)

Because this setup is precisely the one correspond-
ing to DMD, we seek to compare the performance of
our approach to DMD and TDMD. Our comparison
takes the form of average performance over 500 dif-
ferent realizations of the data sets for different combi-
nations of training data sizes n and true measurement
noise standard deviation σ . The data points are spread
out over a simulation period of 4 s, so increasing n indi-
cates increasing density of data per time.

The results, shown in Fig. 4, provide (log base 10)
ratios of the expected error of the posterior predictive
mean (computed with 1000 posterior samples) to the
(T)DMD estimators. The squared errors were calcu-
lated only at the times of observations, and the largest

MSE from each data set for each algorithm was dis-
carded to prevent biasing from outliers. We see that
the biggest gains in using the probabilistic Bayesian
approach come in the low-noise regime. At first, this
seems surprising, but in the low-noise regime, this is
likely the result of the scale of the errors being so small.
As the noise increases, we see the ratio increasing even
though we’d expect DMD to break down much more
quickly than the Bayesian approach. The reason this
occurs is because DMD predictions decay to zero after
a certain level of noise (shown in Fig. 4a), effectively
placing an upper bound on the MSE of the algorithm.
Regardless, the contour plots show that the Bayesian
algorithm outperforms both DMD and TDMD at every
measurement frequency and noise pair considered.

Next, we provide a detailed look at two specific
points on these contour plots to demonstrate the mech-
anism by which DMD/TDMD decline. The first case is
a low-noise/sparse-data case of σ = 10−2 and n = 8,
and the second case is for a higher-noise case σ = 10−1

with more data n = 40.
The reconstruction results for each state are com-

pared in Fig. 5. The prediction (forecasting) results
for just the second state are shown in Fig. 6. The
mean here refers to the posterior predictive mean given
in (43). The shaded area represents the region between
the 97.5th and 2.5th quantiles of the Bayesian poste-
rior. In the low-noise case, we see that all three algo-
rithms perform essentially equally—though the DMD-
based approaches slightly underestimate the amplitude.
In other words, even in the case for which DMD was
designed to perform well, the Bayesian approach per-
forms slightly better. In the high-noise case, we see
that the TDMD predictions become completely out of
phase with increasingly small amplitude, and the DMD
estimator smooths out the data too much and rapidly
converges to zero.Not only does theBayesian approach
provide the most accurate estimate, but it also gives a
quantification of the certainty of its estimate in the form
of its posterior, which (T)DMD is unable to provide.

Figure 7 shows the estimated eigenvalues of the
system by the Bayesian and (T)DMD algorithms. In
the low-noise case, Fig. 7a shows that the Bayesian
approach is slightly more accurate than the (T)DMD
approaches, though they all performwell. For the high-
noise case, Fig. 7b shows that DMD is unable to pro-
vide a reasonable estimate of the eigenvalues. TDMD
gives a close estimate, but the estimated eigenvalues
are too far in the left-hand plane, causing the gradual
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(a) (b) (c)

Fig. 4 Log base 10 ratio of the MSE obtained by the proposed
Bayesian approach to that obtained by (T)DMD for the linear
pendulum model. In all cases, this value is less than zero sig-

nifying that our proposed approach outperforms (T)DMD in all
cases considered. Also observe in the high-noise regime, TDMD
can begin to lose stability

(a) (b)

(c) (d)

Fig. 5 Comparison of reconstruction error among the Bayesian
and (T)DMDalgorithms for the linear pendulum truthmodel. Top
row corresponds to a low-noise/sparse-data case and the bottom
row corresponds to a high-noise/dense-data case. Left column
corresponds to the first state (angular position) and right col-
umn corresponds to the second state (angular velocity). For low-
noise, the algorithms perform similarly; however, the (T)DMD
approaches underestimate the amplitude. For the high-noise case,
DMD fails and TDMD misfits the amplitude. The Bayesian
approach is able to recognize greater uncertainty for the high-
noise case

decay seen in Fig. 6. The Bayesian estimate lies almost
exactly on top of the truth.

Finally, Fig. 8 shows the marginal and joint distribu-
tions of the process and measurement noise variances
for these two cases. The process noise is very close to
zero because we are using a linear model for a linear

(a) (b)

Fig. 6 Comparison of prediction error among the Bayesian and
(T)DMD algorithms for the linear pendulum truth model. Left
panel corresponds to a low-noise/sparse-data case and the right
panel corresponds to a high-noise/dense-data case. Both panels
show the angular velocity of the pendulum. For low-noise, the
algorithms perform similarly. For the high-noise case, DMD fails
and TDMD can be seen to be out of phase and have a smaller
amplitude. The Bayesian approach is able to recognize greater
uncertainty for the high-noise case

Fig. 7 Eigenvalue distributions for the estimators of the linear
pendulum. Themean value here represents themean of the eigen-
values. All three algorithms come very close to learning the true
eigenvalues in the low-noise case, but Bayes is able to outper-
form the other two in both the high- and low-noise cases. DMD
achieves significant error when the data are noisy
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Fig. 8 Marginal and joint posterior distributions of the process
and measurement noise variance parameters during the recovery
of the linear pendulum. In the left panel, 8 measurements are not
enough for the Bayesian estimator to unambiguously determine
the measurement noise, but its best guess (the mode) aligns with
the truth. On the right, we see that 40 measurements are enough
to define a distinct mode within the joint distribution, which also
aligns with the truth

system, and thus the system learns that the dynamics
can be captured exactly. These plots also indicate that
we have learned the measurement noise, as the mode
aligns closely with the true value shown in red. Note
also that the joint distribution in this figure shows that
the two noise variances are negatively correlated, con-
veying the fact that the estimator does not yet have
enough data to determine if the model is off and the
measurements are accurate, or if the model is accurate
and themeasurements are noisy. Asmore data come in,
however, one of these scenarios can usually be ruled out
and the distribution becomes unimodal.

6.4 Nonlinear pendulum, linear model

Next, we consider a problem where the model class
within which we are learning does not encompass the
true underlying dynamical system. This is the most
realistic situation that would be encountered in prac-
tice, and avoids the so-called inverse crime [59,60].

Consider a nonlinear pendulum

[
ẋ1
ẋ2

]
=

[
x2

− g
L sin(x1)

]
, x0 =

[
2.5
0

]
(51)

to be the truth model. We have changed the initial con-
dition to ensure that we are operating in the nonlinear
regime.

(a) (b)

Fig. 9 Contours of the ratios from the nonlinear pendulum
experiments. The experiment is the same as in Fig. 4. A detailed
explanation for the low-noise regime where it appears (T)DMD
outperforms Bayes is given in Sect. 6.4.1

(a) (b)

(c) (d)

Fig. 10 Reconstruction performance for low-noise (top row) and
high-noise (bottom row) data sets for the nonlinear pendulum
using a linear model. All three estimates capture the truth closely
in the low-noise case, but only the Bayesian algorithm performs
well (it is in phase and approximately the correct amplitude) for
the high-noise case

The learning setup is identical to that provided in
Sect. 6.3; we learn a linear model, and the same vali-
dation experiments are performed. These experimental
results are shown in Fig. 9. We are able to clearly see
here that, although the three algorithms are comparable
in the low-noise regime, the strength of the Bayesian
approach increases with the measurement noise. A dis-
cussion on why (T)DMD may outperform the mean
estimator from the Bayesian approach in the low-noise
regime is provided later in Sect. 6.4.1.

We again present more detailed results for two rep-
resentative cases. Both cases have n = 24 data points,
but the first case is a low-noise case of σ = 10−1 and
the second case is a higher-noise case of σ = 1.
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(a) (b)

Fig. 11 Comparison shown here is the same as in Fig. 6, but
this time for a nonlinear pendulum truth model. In the low-noise
case, the estimates are all visually aligned with the truth. In the
high-noise case, DMD fails and TDMD falls out of phase, but
the Bayesian algorithm remains robust and produces an accurate
estimate

Fig. 12 Marginal and joint posterior distributions of the process
and measurement noise variance parameters during the recovery
of the nonlinear pendulum. In the left panel, the joint distribution
is bimodal, offering two possible models with the true case being
strongly preferred. In the right panel, all of the distributions are
unimodal and in alignment with the truth

The resulting reconstructions are shown in Fig. 10,
and the predictions are given in Fig. 11. Note that the
variances of the posterior distributions in both cases
growmuchmore quickly than in either of the linear pen-
dulum examples as a consequence of increased model
uncertainty (process noise). The posterior distribution
can therefore be used to qualitatively assess not only
how informative the data are, but also how appropri-
ate the chosen model is for the system at hand. In the
low-noise case, the performances of the three estimates
are virtually indistinguishable, once again demonstrat-
ing that even in systems that are ideal for (T)DMD,
there is no loss of performancewhenusing theBayesian
estimator. In the high-noise case, DMD struggles with
noisy measurements and settles on quickly decaying to
zero, similar to what we observed in the linear case.
TDMD, on the other hand, comes closer but is notice-

ably out of phasewith the truth. TheBayesian approach
is able to reconstruct the signal very closely, at least
within the constraints imposed by using a linear model.

Next, we investigate what the Bayesian approach
learns for the process and measurement noise in the
case where there is a model error. The marginal and
joint posterior distributions for bothmeasurement noise
cases are shown in Fig. 12. We observe that in the low-
noise case 12a, the joint distribution is bimodal. The
smaller mode corresponds to a model with low pro-
cess noise and high measurement noise, and the larger
mode corresponds to a model with high process noise
and low measurement noise. The Bayesian algorithm
has effectively uncovered that the data can be explained
in one of twoways: either themodel fits the true system
well, but the data are very noisy, or the measurement
noise is low and the model is not capable of properly
capturing the dynamics. In this case, the latter is true
and is also the option that the Bayesian algorithm found
to be much more likely. For the high-noise case 12b,
the joint distribution is unimodal, conveying the pos-
sibility of only one process-measurement noise pair-
ing. Once again, the modes of both the measurement
noise marginal distributions align closely with the truth
shown in red. Finally, we see that the process noise
magnitudes in both cases are much larger than those
seen in the linear pendulum examples (Fig. 8) as a con-
sequence of trying to capture nonlinear dynamics with
a linear model.

6.4.1 Discussion on diagnostics

One of the strengths of the Bayesian approach is that it
separates the learning stage from the decision-making
stage, so if the initial decision rule yields an unsatis-
factory estimate, one can go back and analyze the pos-
terior distribution to devise an improved decision rule.
It was noted earlier in Fig. 9 that the average MSE of
(T)DMD is lower than that of the average MSE of the
Bayesian estimator over 500 data sets when the mea-
surement noise is low. This observation likely implies
that there is a better decision rule that can be used to
achieve performance at least as strong as DMD. To
understand how to best select a point from the poste-
rior to be our estimate, we first look at the posterior over
the states. Figure 13 shows samples from the posterior
predictive distribution for a single data set containing
n = 26 measurements with noise standard deviation
of σ = 0.1. The mean deviates from the truth near the
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Fig. 13 Posterior samples from the data set with n = 26, σ =
0.1 that produced the worst mean estimate out of the 500 with
respect toMSE.This figure illustrates that themeandeviates from
the truth at the extrema of the curve where samples are skewed
toward larger magnitudes. Using a decision rule that selects the
mode here would give a much better estimate

peaks and valleys of the trajectory between about 2.5
and 4s. This is the same location in which the posterior
appears to be significantly spread in possible predic-
tions. This presence of significant outliers is a result
of the bimodal noise distribution previously discussed.
Furthermore, it is clear that the mean is not a good esti-
mator in the case of bimodal distributions; however,
we see that there exists a mode in alignment with the
truth. Upon this realization, we can then craft a deci-
sion rule that selects this mode rather than the mean for
improved performance. In this case, the mode-based
rule would result in the Bayesian approach being 1.3
times better than the TDMD estimator. Moreover, this
entire analysis can be done a posteriori, and therefore
uses no additional assumptions or requirements on our
approach.

We also note that the effect this has on the MSE
ratio appears more strongly in this nonlinear case for
two reasons. The first reason is that the higher pro-
cess noise due to the model error and lowmeasurement
noise can create a bimodal distribution because of the
alternate possibility of a good model with noisy data
as shown earlier. The second reason is that the ratio of
process noise to measurement noise is higher than that
in the linear case. As we have shown in Theorem 4, the
(T)DMD approaches effectively assume the existence
of process noise but no measurement noise. In cases
where the linear and nonlinear models are mismatched,
this becomes a better assumption.

In summary, for cases where the model error can be
significant, a non-mean estimator should be extracted
from the Bayesian posterior. This estimator should be
chosen by considering the bimodality of the learned

process/measurement noise estimator, and can often
be the peak of one of the modes. If this is done (it is
an a posteriori procedure), we have seen that it yields
improved performance compared to (T)DMD.

6.5 Optimal estimators and the Van der Pol oscillator

Next, we consider learning a sparse representation of a
nonlinear system so that we can compare the Bayesian
algorithm directly to SINDy. Here, it will once again
be shown that factoring the process and measurement
noise into our estimator will allow it to be robust even
for noisy measurements.

Consider the nonlinear Van der Pol oscillator

[
ẋ1
ẋ2

]
=

[
x2

μ(1 − x21 )x2 − x1

]
, x0 =

[
0
2

]
, (52)

where μ = 3. In this case, we use the SINDy algo-
rithm rather than DMD to account for the nonlinear
dynamics. For both the Bayesian and SINDy algo-
rithms we therefore consider a subspace of right hand
sides that is spanned by a set of candidate functions.
We choose monomial candidates up to third degree and
their interacting terms.As a result, each algorithmseeks
to learn 20dynamics parameters (10 for each state). The
Bayesian algorithm is additionally taskedwith learning
the covariance matrices parameterized as follows:

Σ(θΣ) =
[
θ21 0
0 θ22

]
, Γ (θΓ ) = θ23 I2×2. (53)

The priors on the dynamics parameters are Laplace dis-
tributions with zero mean and on the variance parame-
ters are once again half-normal distributions.

We consider two cases: one where SINDy shows
strong performance, and one in which SINDy strug-
gles, and we show that the Bayesian algorithm yields
an accurate estimate in both cases. The case in which
SINDy excels is frequent and low-noise data. Here,
n = 2000 measurements were taken over the course
of 20 s with measurement noise standard deviation
of σ = 10−3. In the opposite case, we collect
only n = 200 measurements over 20 s with mea-
surement noise standard deviation of σ = 2.5 ×
10−1.

The reconstructions from these experiments are
shown in Fig. 14, predictions are given in Fig. 15,
and the phase plots over 200s are given in Fig. 16.
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(a) (b)

(d)(c)

Fig. 14 Comparison of reconstruction error among theBayesian
and SINDy algorithms for the Van der Pol system. Top row cor-
responds to a low-noise/dense-data case, and the bottom row
corresponds to a high-noise/sparse-data case. Left column corre-
sponds to the first state (position), and right column corresponds
to the second state (velocity). The Bayesian estimator is able to
accurately reconstruct the dynamics, even in the presence of high
noise

Here, the mode represents the mode of the poste-
rior predictive distribution. In the low-noise case, we
see that the Bayesian algorithm and SINDy both cap-
ture the dynamics very closely. We see that SINDy
agrees slightly more closely with the trajectory as a
result of its hard threshold regularization. Note that
the posterior in this case is very small because the
high number of data points and low measurement
noise gives us high certainty in our estimate. In the
high-noise case, we see that SINDy gives a similar
result to what DMDgave when themeasurements were
noisy: the trajectory immediately flatlines. When the
data are noisy like this, the procedure for SINDy is
to denoise the data using total variation (TV) regu-
larization [35] before executing the algorithm. How-
ever, the increased timestep between data makes it dif-
ficult to accurately denoise the data, and when the TV
regularization is performed, SINDy ends up giving an
unstable estimate. The Bayesian approach, however,
is still able to identify the dynamics of the Van der
Pol system. The posterior in this high-noise case is
wider, signifying that the estimate holds more uncer-
tainty than the low-noise and frequent measurements
case.

(a) (b)

(c) (d)

Fig. 15 Comparison of prediction error among the Bayesian and
SINDy algorithms for theVan der Pol system.Themeaning of the
figures is the same as described in Fig. 14. The model learned
by the Bayesian estimator is still accurate at a different initial
condition

(a) (b)

Fig. 16 Phase-diagram reconstruction for the Van der Pol oscil-
lator under the two indicated data conditions. In the low-noise and
frequent data domain, both the Bayesian and SINDy estimates
lie directly on the truth. In the high-noise case, the Bayesian
posterior is wider, but is still visually aligned with the truth. The
SINDy estimate is unable to recover the limit cycle, and the large
“x” marks the equilibrium point to which SINDy converges, as
shown in Fig. 15

6.6 Known model form

Finally, we consider the case where the model form is
known, for instance from physical laws, but the param-
eters are uncertain. This is the classical inference set-
ting and has seen a lot of development [61–68], includ-
ing in the computational physics community. However,
much of this literature either only considers determin-
istic dynamics according to some variation of Eq. (2) or
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only static problems. In this section, we consider both a
chaotic system and a reaction–diffusion PDE in which
we impose process noise to aid in the parameter estima-
tion. For the reaction–diffusion PDE, this implies that
the process noise is added to the discretized dynamics.
Our results suggest that these methods are applicable
to spatial problems and are able to effectively learn
chaotic dynamics with a much smaller amount of data
than observed in the literature.

6.6.1 Lorenz ’63

We first consider the chaotic Lorenz ’63 system [69]

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦ =

⎡
⎣ θ1(x2 − x1)
x1(θ2 − x3) − x2
x1x2 − θ3x3

⎤
⎦ , x0 =

⎡
⎣ 2.0181
3.5065
11.8044

⎤
⎦ .

(54)

The initial condition of this system was chosen so as to
sit on the attractor. We attempt only to learn the param-
eters θΨ = (θ1, θ2, θ3). The difficulty with learning in
chaotic systems is that the computation of the likeli-
hood can be challenging. Since the likelihood involves
running a filter, and filtering chaotic systems is well
known to be challenging, it may seem that our approach
would breakdown. Here, we show that our Gaussian
filtering approach is still able to learn an approximate
dynamical system without resorting to more compli-
cated likelihood building processes, e.g., using corre-
lation integrals [28,70].

The priors on the dynamics parameters are once
again improper and uniform. In addition to learning
the model parameters in this example, we also learn
the process noise variance for each state and the mea-
surement noise variance for a total of seven parameters.
The parameterizations of the covariance matrices are
shown:

Σ(θΣ) =
⎡
⎣θ4 0 0
0 θ5 0
0 0 θ6

⎤
⎦ , Γ (θΓ ) = θ7 I3×3, (55)

with half-normal priors as before.
One hundred data points uniformly spaced over 10 s

are collected with a true measurement noise standard
deviation of 2.0. The predicted state trajectories after
10 s of simulation using the parameter posterior mode

(a) (b) (c)

Fig. 17 Lorenz ’63 prediction posteriors. Although the trajecto-
ries become misaligned rather quickly due to the chaotic nature
of the system, the posterior phase diagram (Fig. 18) reveals that
the algorithm has discovered that the dynamics exist on a low-
dimensional attractor

Fig. 18 Reconstruction and prediction of the Lorenz ’63 attrac-
tor. The right panel compares the predicted and true trajectories
up to 200s using the mode of the parameter posterior distribu-
tion. The proposed approach is able to successfully discover the
Lorenz attractor from sparse, noisy data

are shown in Fig. 17. Similar to the Van der Pol oscil-
lator, the dynamics exist on a low-dimensional attrac-
tor in phase space, and the wide, but constant, poste-
rior distribution once again reflects this fact. Figure 18
shows the reconstructed and predicted attractors from
the Bayesian algorithm. These figures show that while
we cannot accurately capture the state, indeed all meth-
ods would eventually break down due to the chaotic
nature of the system, we do predict a qualitatively sim-
ilar attractor. As such, one would expect that most post-
processing of these attractors, e.g., for control, would
yield similar results.

Similar to the eigenvalues of the linear pendulum,
the samples collected here can be used to investigate
the probability distribution of any dynamical quantity
of interest. Here, we show the estimation of the three
Lyapunov exponents of the Lorenz system in Fig. 19.
Lyapunov exponents are a measure of the exponential
growth rates of generic perturbations of a system. A
positive Lyapunov exponent implies that an arbitrarily
small perturbation will grow exponentially large over
time. Such systems are considered to be chaotic [71].
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(a) (b) (c)

Fig. 19 Posterior of the Lyapunov exponent estimation of the
Lorenz ’63 system. The distribution of λ3 is wider than the other
two because the behavior of the system is dominated by the first
two exponents, making the third difficult to estimate with high
certainty

Here, the Lyapunov exponents are computed using a
function from MATLAB file exchange [72] that uses
the algorithm proposed in [73]. The red line denotes
the approximated value of the Lorenz system’s Lya-
punov exponents using the truth values of the parame-
ters. When approximating the Lyapunov exponents of
a system, the growth of the initial perturbation is dom-
inated by the largest Lyapunov exponents, making the
smaller Lyapunov exponents more difficult to estimate
precisely. This fact is reflected in the distribution of λ3,
which is much wider than the other two.We see that for
each exponent, the true value is contained in its respec-
tive distribution at a relatively high probability value.

6.6.2 Reaction diffusion

In the final example, we consider both a PDE and a case
where the measurement operator h is not the identity.
The reaction diffusion PDE is given by

∂C1

∂t
= θ1

∂2C1

∂x2
+ 0.1 − C1 + θ3C

2
1C2

∂C2

∂t
= θ2

∂2C2

∂x2
C2 + 0.9 − C2

1C2

(56)

where C1,C2 specify the concentrations. A one-
dimensional spatial grid was selected to have regular
intervals of 0.4 units between boundaries of -40 and 40
for a total of 201 grid points for each of the two states.
The boundary conditions at x = ±40 are

∂C1

∂x
= ∂C2

∂x
= 0, (57)

and the initial condition of the system was drawn from
a uniform distribution as shown

(Ci ) j ∼ U (0.4, 0.6), for t = 0; ∀i = 1, 2;

(a) (b)

(c) (d)

Fig. 20 Reconstruction and prediction of the observables of the
reaction diffusion system. The top row shows the reconstruc-
tion, and the bottom row shows the prediction for an alternate
initial condition. The left column is the first measurement state
(first moment), and the right column is the second measurement
state (second moment). The estimates are very close to the truth,
demonstrating the generality of the learned model

∀ j = 1, ..., 201. (58)

Similar to the Lorenz example, for this system we
attempt to learn only the model parameters, θ1, θ2, and
θ3 rather than the complete model. The measurement
covariance matrix is assumed to be known, and the
process noise covariance is fixed to be 1e-8 such that
the total number of parameters that we are learning
remains only three. The observation operator indirectly
measures the concentration through only the first two
moments of the concentration of the first species at
certain time intervals

y1(t) =
∫ 40

−40
C1(t) dx

y2(t) =
∫ 40

−40
C2
1 (t) dx .

(59)

We collect measurements every 0.5 s for 15 s with
noise standard deviation of 10−2. The reconstructions
and predictions of the moments from these data using
the mode of the parameter posterior distribution are
shown in Fig. 20. Additionally, the true and recon-
structed contours of C1 and C2 are shown in Fig. 21.
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Fig. 21 The experiment is the same as in Fig. 20. The top row
shows the true contours of C1 and C2. The bottom row shows
the contours of C1 and C2 reconstructed using the mode of the
parameter posterior distribution. Visually, the two rows appear
very similar, reflecting the strong performance of the Bayesian
algorithm

The Bayesian estimate shows close agreement with the
truth.

7 Conclusion

In this paper, we have shown how data-driven system
ID methods that consider only the measurement noise
or only the process noise are impractical formany prob-
lems. When only the measurement noise is considered,
increasingly many local minima arise as data collec-
tion is continued, making identification of the optimal
solution difficult. When only process noise is consid-
ered, noisy and/or sparse measurements can cause the
estimator to break down, even after incorporation of a
denoising algorithm. By deriving a probabilistic model
of our dynamical system from first principles, we were
able to account for howparameter,model, andmeasure-
ment uncertainty can each affect the learning problem
in different ways. Then, using the UKF-MCMC algo-
rithm, we compared the performance of the Bayesian
approach to DMD and SINDy, which only consider
model uncertainty, on a number of systems with vary-
ing values of measurement noise and frequency. It was
shown that when substantial noise is introduced into
the measurements, DMD and SINDy will fail, but the
Bayesian algorithm continues to yield strong perfor-

mance.Thus, it has been empirically shown that consid-
eration of parameter, model, and measurement uncer-
tainty leads to enhanced performance on a wider class
of systems than that to which most least squares-based
approaches can be reliably applied.
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A Pseudocode

In this appendix, we provide the pseudocode for
both the linear Kalman filter and nonlinear unscented
Kalman filter algorithms. In the UKF algorithm, α and
κ are parameters that determine the spread of the sigma
points around themean,β is a parameter used for incor-
porating prior information on the distribution of x , and
the notation [·]i denotes the i-th row of the matrix [22].

Algorithm 2Kalman filtering for evaluating p(θ | Yn)

(exact for linear models)
Input: System parameters θ = (θΨ , θh, θΣ , θΓ );

Prior distribution p(θ);
Distribution on initial condition m0, P0;
Linear dynamical model parameterization A(θΨ );
Linear observation model parameterization H(θh);
Covariance matrices Σ(θΣ) and Γ (θΓ )

Output: Posterior evaluation p(θ | Yn)

1: Compute the prior p(θ | Y0) = p(θ)

2: for k = 1 to n do
3: Predict p(Xk |θ,Yk−1) = N (m−

k , P−
k )

m−
k (θ) = A(θΨ )mk−1

P−
k (θ) = A(θΨ )Pk−1AT (θΨ ) + Σ(θΣ)

4: Compute the Evidence p(yk |θ,Yk−1) = N (μk , Sk)
μk(θ) = H(θh)m

−
k

Sk(θ) = H(θh)P
−
k HT (θh) + Γ (θΓ )

5: Update p(Xk |θ,Yk) = N (mk , Pk)
mk(θ) = m−

k + P−
k HT (θh)S

−1
k (yk − μk)

Pk(θ) = P−
k − P−

k HT (θh)S
−1
k H(θh)P

−
k

6: Update p(θ |Yk) ∝ p(yk | θ,Yk−1)p(θ |Yk−1)

7: end for
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Algorithm 3Unscented Kalman filtering algorithm for
approximating p(θ | Yn)

Input: System parameters θ = (θΨ , θh, θΣ , θΓ );
Prior distribution p(θ);
Distribution on initial condition m0, P0;
Dynamical model parametrization Ψ (θΨ );
Observation model parameterization h(θh);
Covariance matrices Σ(θΣ) and Γ (θΓ );
UKF parameters α, κ , β

Output: Approximate evaluation of the posterior p(θ | Yn)

1: Calculate λ = α2(d + κ) − d
2: Compute the weights

W (m)
0 = λ

d+λ

W (c)
0 = λ

d+λ
+ (1 − α2 + β)

W (m)
i = W (c)

i = 1
2(d+λ)

, ∀i = 1, . . . , 2d
3: Compute the prior p(θ | Y0) = p(θ)

4: for k = 1 to n do
5: Predict p(Xk |θ,Yk−1) ≈ N (m−

k , P−
k )

6: Form the sigma points
X

(0)
k−1(θ) = mk−1

X
(i)
k−1(θ) = mk−1 + √

d + λ
[√

Pk−1
]
i

X
(i+d)
k−1 (θ) = mk−1 − √

d + λ
[√

Pk−1
]
i , ∀i =

1, . . . , d
7: Propagate the sigma points through the dynamical

model
X̂

(i)
k (θ) = Ψ (X

(i)
k , θΨ ), ∀i = 0, . . . , 2d

8: Compute the mean and covariance
m−

k (θ) = ∑2d
i=0 W

(m)
i X̂

(i)
k

P−
k (θ) = ∑2d

i=0 W
(c)
i (X̂

(i)
k −m−

k )(X̂
(i)
k −m−

k )T +
Σ(θΣ)

9: Compute the Evidence p(yk |θ,Yk−1) ≈ N (μk , Sk)
10: Update the sigma points

X
(0)
k−1(θ) = mk−1

X
(i)
k−1(θ) = mk−1 + √

d + λ
[√

Pk−1
]
i

X
(i+d)
k−1 (θ) = mk−1 − √

d + λ
[√

Pk−1
]
i , ∀i =

1, . . . , d
11: Propagate the sigma points through the observation

model
Ŷ

(i)
k (θ) = h(X

(i)
k , θh), ∀i = 0, . . . , 2d

12: Compute the mean and covariance
μk(θ) = ∑2d

i=0 W
(m)
i Ŷ

(i)
k

Sk(θ) = ∑2d
i=0 W

(c)
i (Ŷ

(i)
k − μ−

k )(Ŷ
(i)
k − μ−

k )T +
Γ (θΓ )

13: Update p(Xk |θ,Yk) ≈ N (mk , Pk)
Ck(θ) = ∑2d

i=0 W
(c)
i (X

(i)
k − m−

k )(Ŷ
(i)
k − μk)

T

mk(θ) = m−
k + (Ck S

−1
k )(yk − μk)

Pk(θ) = P−
k − (Ck S

−1
k )S−1

k (Ck S
−1
k )T

14: Update p(θ |Yk) ∝ p(yk | θ,Yk−1)p(θ |Yk−1)

15: end for
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